latest news

Distractions and amusements, with a sandwich and coffee.

This love's a nameless dream.
•
• try to figure it out
• more quotes

On March 14th celebrate `\pi` Day. Hug `\pi`—find a way to do it.

For those who favour `\tau=2\pi` will have to postpone celebrations until July 26th. That's what you get for thinking that `\pi` is wrong. I sympathize with this position and have `\tau` day art too!

If you're not into details, you may opt to party on July 22nd, which is `\pi` approximation day (`\pi` ≈ 22/7). It's 20% more accurate that the official `\pi` day!

Finally, if you believe that `\pi = 3`, you should read why `\pi` is not equal to 3.

And if you've got to sleep a moment on the road

I will steer for you

And if you want to work the street alone

I'll disappear for you

—Leonard Cohen (I'm Your Man)

This year's is the 30th anniversary of `\pi` day. The theme of the art is bridging the world and making friends. So myself I again team up with my long-time friend and collaborator Jake Lever. I worled with Jake on the snowflake catalogue, where we build a world of flakes.

And so, this year we also build a world. We start with all the roads in the world and stitch them together in brand new ways. And if you walk more than 1 km in this world, you'll likely to be transported somewhere completely different.

This year's `\pi` day song is Trance Groove: Paris. Why? Because it's worth to go to new places—real or imagined.

Last year, I made a new world in the sky with my 2017 `\pi` day sky charts. This year, it's time for something a little closer to the ground. Using street maps of various cities, we rearrange the streets and join neighbourhoods from around the world using the digits of `\pi` as a recipe.

A walk from to Istanbul to San Francisco is only 5 minutes? Well, no. But what if it could be.

Read how it was done or simply enjoy the art.

City strips are horizontal arrangements of patches of roads sampled from a city. The order of the patches is determined by the digits of `\pi`, which are used to select regions of specific density of roads.

These strips chart 10 patches—the patch for the digit "1" has a few roads and the patch for "9" is the most dense.

This series of patches is extracted from the city strips above. Three patches for the consecutive digits 159 are shown and demonstrate how very quickly we can progress from nowhere to somewhere.

This arrangement of roads builds on city strips. Here, 36 digits of `\pi` are arranged on a 6 × 6 grid. Roads patches are sampled from 10 different cities—each digit is assigned a different city.

In the map below the digit-to-city assignments are: 0:Amsterdam, 1:Doha, 2:Marrakesh, 3:Mumbai, 4:Nairobi, 5:Rome, 6:San Francisco, 7:Seoul, 8:Shanghai and 9:Vancouver.

City mixes are world patches that only use two cities. Below we assign the even digits to Melbourne and the odd digits to Nice.

*You can look back there to explain things,
but the explanation disappears.
You'll never find it there.
Things are not explained by the past.
They're explained by what happens now.
—Alan Watts*

A Markov chain is a probabilistic model that is used to model how a system changes over time as a series of transitions between states. Each transition is assigned a probability that defines the chance of the system changing from one state to another.

Together with the states, these transitions probabilities define a stochastic model with the Markov property: transition probabilities only depend on the current state—the future is independent of the past if the present is known.

Once the transition probabilities are defined in matrix form, it is easy to predict the distribution of future states of the system. We cover concepts of aperiodicity, irreducibility, limiting and stationary distributions and absorption.

This column is the first part of a series and pairs particularly well with Alan Watts and Blond:ish.

Grewal, J., Krzywinski, M. & Altman, N. (2019) Points of significance: Markov Chains. *Nature Methods* **16**:663–664.

*Places to go and nobody to see.*

Exquisitely detailed maps of places on the Moon, comets and asteroids in the Solar System and stars, deep-sky objects and exoplanets in the northern and southern sky. All maps are zoomable.

Quantile regression explores the effect of one or more predictors on quantiles of the response. It can answer questions such as "What is the weight of 90% of individuals of a given height?"

Unlike in traditional mean regression methods, no assumptions about the distribution of the response are required, which makes it practical, robust and amenable to skewed distributions.

Quantile regression is also very useful when extremes are interesting or when the response variance varies with the predictors.

Das, K., Krzywinski, M. & Altman, N. (2019) Points of significance: Quantile regression. *Nature Methods* **16**:451–452.

Altman, N. & Krzywinski, M. (2015) Points of significance: Simple linear regression. *Nature Methods* **12**:999–1000.

Outliers can degrade the fit of linear regression models when the estimation is performed using the ordinary least squares. The impact of outliers can be mitigated with methods that provide robust inference and greater reliability in the presence of anomalous values.

We discuss MM-estimation and show how it can be used to keep your fitting sane and reliable.

Greco, L., Luta, G., Krzywinski, M. & Altman, N. (2019) Points of significance: Analyzing outliers: Robust methods to the rescue. *Nature Methods* **16**:275–276.

Altman, N. & Krzywinski, M. (2016) Points of significance: Analyzing outliers: Influential or nuisance. Nature Methods 13:281–282.

Two-level factorial experiments, in which all combinations of multiple factor levels are used, efficiently estimate factor effects and detect interactions—desirable statistical qualities that can provide deep insight into a system.

They offer two benefits over the widely used one-factor-at-a-time (OFAT) experiments: efficiency and ability to detect interactions.

Since the number of factor combinations can quickly increase, one approach is to model only some of the factorial effects using empirically-validated assumptions of effect sparsity and effect hierarchy. Effect sparsity tells us that in factorial experiments most of the factorial terms are likely to be unimportant. Effect hierarchy tells us that low-order terms (e.g. main effects) tend to be larger than higher-order terms (e.g. two-factor or three-factor interactions).

Smucker, B., Krzywinski, M. & Altman, N. (2019) Points of significance: Two-level factorial experiments *Nature Methods* **16**:211–212.

Krzywinski, M. & Altman, N. (2014) Points of significance: Designing comparative experiments.. Nature Methods 11:597–598.

Digits, internationally

Celebrate `\pi` Day (March 14th) and set out on an exploration explore accents unknown (to you)!

This year is purely typographical, with something for everyone. Hundreds of digits and hundreds of languages.

A special kids' edition merges math with color and fat fonts.

Check out art from previous years: 2013 `\pi` Day and 2014 `\pi` Day, 2015 `\pi` Day, 2016 `\pi` Day, 2017 `\pi` Day and 2018 `\pi` Day.