listen; there's a hell of a good universe next door: let's go.
•
• go there
• more quotes

very clickable

π day
·
ASCII
·
choices
·
clocks
·
color
·
covers
^{NEW}
·
deadly genomes
^{NEW}
·
debates
·
famous rat
·
gigapixel skies
^{NEW}
·
hitchens
·
huge voids
·
keyboards
·
languages
·
LOTRO
·
photography
·
questions
·
quotes
·
road trips
·
rockets
·
satire
·
sky constellations
^{NEW}
·
spam poetry
·
time
·
tripsum
·
type
·
unwords
·
words
·
writing
·
zaomm

visualization
**+** math

Numbers are a lot of fun. They can start conversations—the interesting number paradox is a party favourite: every number must be interesting because the first number that wasn't would be very interesting! Of course, in the wrong company they can just as easily end conversations.

The art here is my attempt at transforming famous numbers in mathematics into pretty visual forms, start some of these conversations and awaken emotions for mathematics—other than dislike and confusion

Numerology is bogus, but art based on numbers can be beautiful. Proclus got it right when he said (as quoted by M. Kline in *Mathematical Thought from Ancient to Modern Times*)

Wherever there is number, there is beauty.

—Proclus Diadochus

The consequence of the interesting number paradox is that all numbers are interesting. But some are more interesting than others—how Orwellian!

All animals are equal, but some animals are more equal than others.

—George Orwell (Animal Farm)

Numbers such as `\pi` (or `\tau` if you're a revolutionary), `\phi`, `e`, `i = \sqrt{-1}`, and `0` have captivated imagination. Chances are at least one of them appears in the next physics equation you come across.

π φ e

= 3.14159 26535 89793 23846 26433 83279 50288 41971 69399 ... = 1.61803 39887 49894 84820 45868 34365 63811 77203 09179 ... = 2.71828 18284 59045 23536 02874 71352 66249 77572 47093 ...

Of these three transcendental numbers, `\pi` (3.14159265...) is the most well known. It is the ratio of a circle's circumference to its diameter (`d = \pi r`) and appears in the formula for the area of the circle (`a = \pi r^2`).

The Golden Ratio (`\phi`, 1.61803398...) is the attractive proportion of values `a > b` that satisfy `{a+b}/2 = a/b`, which solves to `a/b = {1 + \sqrt{5}}/2`.

The last of the three numbers, `e` (2.71828182...) is Euler's number and also known as the base of the natural logarithm. It, too, can be defined geometrically—it is the unique real number, `e`, for which the function `f(x) = e^x` has a tangent of slope 1 at `x=0`. Like `\pi`, `e` appears throughout mathematics. For example, `e` is central in the expression for the normal distribution as well as the definition of entropy. And if you've ever heard of someone talking about log plots ... well, there's `e` again!

Two of these numbers can be seen together in mathematics' most beautiful equation, the Euler identity: `e^{i\pi} = -1`. The tau-oists would argue that this is even prettier: `e^{i\tau} = 1`.

Did you notice how the 13th digit of all three numbers is the same (9)? This accidental similarity generates its own number—the Accidental Similarity Number (ASN).

news
**+** thoughts

*Nature uses only the longest threads to weave her patterns, so that each small piece of her fabric reveals the organization of the entire tapestry. – Richard Feynman*

Following up on our Neural network primer column, this month we explore a different kind of network architecture: a convolutional network.

The convolutional network replaces the hidden layer of a fully connected network (FCN) with one or more filters (a kind of neuron that looks at the input within a narrow window).

Even through convolutional networks have far fewer neurons that an FCN, they can perform substantially better for certain kinds of problems, such as sequence motif detection.

Derry, A., Krzywinski, M & Altman, N. (2023) Points of significance: Convolutional neural networks. *Nature Methods* **20**:.

Derry, A., Krzywinski, M. & Altman, N. (2023) Points of significance: Neural network primer. Nature Methods **20**:165–167.

Lever, J., Krzywinski, M. & Altman, N. (2016) Points of significance: Logistic regression. Nature Methods **13**:541–542.

*Nature is often hidden, sometimes overcome, seldom extinguished. —Francis Bacon*

In the first of a series of columns about neural networks, we introduce them with an intuitive approach that draws from our discussion about logistic regression.

Simple neural networks are just a chain of linear regressions. And, although neural network models can get very complicated, their essence can be understood in terms of relatively basic principles.

We show how neural network components (neurons) can be arranged in the network and discuss the ideas of hidden layers. Using a simple data set we show how even a 3-neuron neural network can already model relatively complicated data patterns.

Derry, A., Krzywinski, M & Altman, N. (2023) Points of significance: Neural network primer. *Nature Methods* **20**:165–167.

Lever, J., Krzywinski, M. & Altman, N. (2016) Points of significance: Logistic regression. Nature Methods **13**:541–542.

Our cover on the 11 January 2023 Cell Genomics issue depicts the process of determining the parent-of-origin using differential methylation of alleles at imprinted regions (iDMRs) is imagined as a circuit.

Designed in collaboration with with Carlos Urzua.

Akbari, V. *et al.* Parent-of-origin detection and chromosome-scale haplotyping using long-read DNA methylation sequencing and Strand-seq (2023) Cell Genomics 3(1).

Browse my gallery of cover designs.

My cover design on the 6 January 2023 Science Advances issue depicts DNA sequencing read translation in high-dimensional space. The image showss 672 bases of sequencing barcodes generated by three different single-cell RNA sequencing platforms were encoded as oriented triangles on the faces of three 7-dimensional cubes.

More details about the design.

Kijima, Y. *et al.* A universal sequencing read interpreter (2023) *Science Advances* **9**.

Browse my gallery of cover designs.

*If you sit on the sofa for your entire life, you’re running a higher risk of getting heart disease and cancer. —Alex Honnold, American rock climber*

In a follow-up to our Survival analysis — time-to-event data and censoring article, we look at how regression can be used to account for additional risk factors in survival analysis.

We explore accelerated failure time regression (AFTR) and the Cox Proportional Hazards model (Cox PH).

Dey, T., Lipsitz, S.R., Cooper, Z., Trinh, Q., Krzywinski, M & Altman, N. (2022) Points of significance: Regression modeling of time-to-event data with censoring. *Nature Methods* **19**:1513–1515.

My 5-dimensional animation sets the visual stage for Max Cooper's *Ascent* from the album *Unspoken Words*. I have previously collaborated with Max on telling a story about infinity for his *Yearning for the Infinite* album.

I provide a walkthrough the video, describe the animation system I created to generate the frames, and show you all the keyframes

The video recently premiered on YouTube.

Renders of the full scene are available as NFTs.

© 1999–2023 Martin Krzywinski | contact | Canada's Michael Smith Genome Sciences Centre ⊂ BC Cancer Research Center ⊂ BC Cancer ⊂ PHSA