Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - contact me Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca on Twitter Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - Lumondo Photography Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - Pi Art Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - Hilbertonians - Creatures on the Hilbert Curve
Here we are now at the middle of the fourth large part of this talk.Pepe Deluxeget nowheremore quotes

accidents: beautiful


EMBO Practical Course: Bioinformatics and Genome Analysis, 5–17 June 2017.


visualization + design

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
The 2017 Pi Day art imagines the digits of Pi as a star catalogue with constellations of extinct animals and plants. The work is featured in the article Pi in the Sky at the Scientific American SA Visual blog.

The art of Pi (`\pi`), Phi (`\phi`) and `e`


Pi Art Posters
 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
2017 `\pi` day

Pi Art Posters
 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
2016 `\pi` approximation day

Pi Art Posters
 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
2016 `\pi` day

Pi Art Posters
 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
2015 `\pi` day

Pi Art Posters
 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
2014 `\pi` approx day

Pi Art Posters
 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
2014 `\pi` day

Pi Art Posters
 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
2013 `\pi` day

Pi Art Posters
 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Circular `\pi` art

Numbers are a lot of fun. They can start conversations—the interesting number paradox is a party favourite: every number must be interesting because the first number that wasn't would be very interesting! Of course, in the wrong company they can just as easily end conversations.

The art here is my attempt at transforming famous numbers in mathematics into pretty visual forms, start some of these conversations and awaken emotions for mathematics—other than dislike and confusion

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Like music with numbers? Try Angels at My Door (Una), Pt vs Ys (Yoshinori Sunahara), 2wicky (Hooverphonic), One (Aimee Mann), Straight to Number One (Touch and Go), 99 luftbaloons (Nena).

Numerology is bogus, but art based on numbers can be beautiful. Proclus got it right when he said (as quoted by M. Kline in Mathematical Thought from Ancient to Modern Times)

Wherever there is number, there is beauty.
Proclus Diadochus


Pi Art Posters
 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca buy artwork
2,258 digits of `\phi`, 3,855 digits of `e` and 3,628 digits of `\pi` in 6 level treemaps. Uniform line thickness. Bauhaus prime colors in Piet Mondrian style. (2015 `\pi` day posters, BUY ARTWORK)
Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
All art posters are available for purchase.
I take custom requests.

the numbers π, φ and e

The consequence of the interesting number paradox is that all numbers are interesting. But some are more interesting than others—how Orwellian!

All animals are equal, but some animals are more equal than others.
—George Orwell (Animal Farm)

Numbers such as `\pi` (or `\tau` if you're a revolutionary), `\phi`, `e`, `i = \sqrt{-1}`, and `0` have captivated imagination. Chances are at least one of them appears in the next physics equation you come across.

π 
φ
e 
= 3.14159 26535 89793 23846 26433 83279 50288 41971 69399 ...
= 1.61803 39887 49894 84820 45868 34365 63811 77203 09179 ...
= 2.71828 18284 59045 23536 02874 71352 66249 77572 47093 ...

Of these three transcendental numbers, `\pi` (3.14159265...) is the most well known. It is the ratio of a circle's circumference to its diameter (`d = \pi r`) and appears in the formula for the area of the circle (`a = \pi r^2`).


Pi Art Posters
 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca buy artwork
2,258 digits of `\phi`, 3,855 digits of `e` and 3,628 digits of `\pi` in 6 level treemaps. Uniform line thickness. Bauhaus prime colors in Piet Mondrian style. (2016 `\pi` day posters, BUY ARTWORK)

The Golden Ratio (`\phi`, 1.61803398...) is the attractive proportion of values `a > b` that satisfy `{a+b}/2 = a/b`, which solves to `a/b = {1 + \sqrt{5}}/2`.

The last of the three numbers, `e` (2.71828182...) is Euler's number and also known as the base of the natural logarithm. It, too, can be defined geometrically—it is the unique real number, `e`, for which the function `f(x) = e^x` has a tangent of slope 1 at `x=0`. Like `\pi`, `e` appears throughout mathematics. For example, `e` is central in the expression for the normal distribution as well as the definition of entropy. And if you've ever heard of someone talking about log plots ... well, there's `e` again!

Two of these numbers can be seen together in mathematics' most beautiful equation, the Euler identity: `e^{i\pi} = -1`. The tau-oists would argue that this is even prettier: `e^{i\tau} = 1`.

accidentally similar

Did you notice how the 13th digit of all three numbers is the same (9)? This accidental similarity generates its own number—the Accidental Similarity Number (ASN).

VIEW ALL

news + thoughts

Ensemble methods: Bagging and random forests

Mon 16-10-2017
Many heads are better than one.

We introduce two common ensemble methods: bagging and random forests. Both of these methods repeat a statistical analysis on a bootstrap sample to improve the accuracy of the predictor. Our column shows these methods as applied to Classification and Regression Trees.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Nature Methods Points of Significance column: Ensemble methods: Bagging and random forests. (read)

For example, we can sample the space of values more finely when using bagging with regression trees because each sample has potentially different boundaries at which the tree splits.

Random forests generate a large number of trees by not only generating bootstrap samples but also randomly choosing which predictor variables are considered at each split in the tree.

Krzywinski, M. & Altman, N. (2017) Points of Significance: Ensemble methods: bagging and random forests. Nature Methods 14:933–934.

Background reading

Krzywinski, M. & Altman, N. (2017) Points of Significance: Classification and regression trees. Nature Methods 14:757–758.

...more about the Points of Significance column

Classification and regression trees

Mon 16-10-2017
Decision trees are a powerful but simple prediction method.

Decision trees classify data by splitting it along the predictor axes into partitions with homogeneous values of the dependent variable. Unlike logistic or linear regression, CART does not develop a prediction equation. Instead, data are predicted by a series of binary decisions based on the boundaries of the splits. Decision trees are very effective and the resulting rules are readily interpreted.

Trees can be built using different metrics that measure how well the splits divide up the data classes: Gini index, entropy or misclassification error.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Nature Methods Points of Significance column: Classification and decision trees. (read)

When the predictor variable is quantitative and not categorical, regression trees are used. Here, the data are still split but now the predictor variable is estimated by the average within the split boundaries. Tree growth can be controlled using the complexity parameter, a measure of the relative improvement of each new split.

Individual trees can be very sensitive to minor changes in the data and even better prediction can be achieved by exploiting this variability. Using ensemble methods, we can grow multiple trees from the same data.

Krzywinski, M. & Altman, N. (2017) Points of Significance: Classification and regression trees. Nature Methods 14:757–758.

Background reading

Lever, J., Krzywinski, M. & Altman, N. (2016) Points of Significance: Logistic regression. Nature Methods 13:541-542.

Altman, N. & Krzywinski, M. (2015) Points of Significance: Multiple Linear Regression Nature Methods 12:1103-1104.

Lever, J., Krzywinski, M. & Altman, N. (2016) Points of Significance: Classifier evaluation. Nature Methods 13:603-604.

Lever, J., Krzywinski, M. & Altman, N. (2016) Points of Significance: Model Selection and Overfitting. Nature Methods 13:703-704.

Lever, J., Krzywinski, M. & Altman, N. (2016) Points of Significance: Regularization. Nature Methods 13:803-804.

...more about the Points of Significance column

Personal Oncogenomics Program 5 Year Anniversary Art

Wed 26-07-2017

The artwork was created in collaboration with my colleagues at the Genome Sciences Center to celebrate the 5 year anniversary of the Personalized Oncogenomics Program (POG).

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
5 Years of Personalized Oncogenomics Program at Canada's Michael Smith Genome Sciences Centre. The poster shows 545 cancer cases. (left) Cases ordered chronologically by case number. (right) Cases grouped by diagnosis (tissue type) and then by similarity within group.

The Personal Oncogenomics Program (POG) is a collaborative research study including many BC Cancer Agency oncologists, pathologists and other clinicians along with Canada's Michael Smith Genome Sciences Centre with support from BC Cancer Foundation.

The aim of the program is to sequence, analyze and compare the genome of each patient's cancer—the entire DNA and RNA inside tumor cells— in order to understand what is enabling it to identify less toxic and more effective treatment options.

Principal component analysis

Thu 06-07-2017
PCA helps you interpret your data, but it will not always find the important patterns.

Principal component analysis (PCA) simplifies the complexity in high-dimensional data by reducing its number of dimensions.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Nature Methods Points of Significance column: Principal component analysis. (read)

To retain trend and patterns in the reduced representation, PCA finds linear combinations of canonical dimensions that maximize the variance of the projection of the data.

PCA is helpful in visualizing high-dimensional data and scatter plots based on 2-dimensional PCA can reveal clusters.

Altman, N. & Krzywinski, M. (2017) Points of Significance: Principal component analysis. Nature Methods 14:641–642.

Background reading

Altman, N. & Krzywinski, M. (2017) Points of Significance: Clustering. Nature Methods 14:545–546.

...more about the Points of Significance column

`k` index: a weightlighting and Crossfit performance measure

Wed 07-06-2017

Similar to the `h` index in publishing, the `k` index is a measure of fitness performance.

To achieve a `k` index for a movement you must perform `k` unbroken reps at `k`% 1RM.

The expected value for the `k` index is probably somewhere in the range of `k = 26` to `k=35`, with higher values progressively more difficult to achieve.

In my `k` index introduction article I provide detailed explanation, rep scheme table and WOD example.

Dark Matter of the English Language—the unwords

Wed 07-06-2017

I've applied the char-rnn recurrent neural network to generate new words, names of drugs and countries.

The effect is intriguing and facetious—yes, those are real words.

But these are not: necronology, abobionalism, gabdologist, and nonerify.

These places only exist in the mind: Conchar and Pobacia, Hzuuland, New Kain, Rabibus and Megee Islands, Sentip and Sitina, Sinistan and Urzenia.

And these are the imaginary afflictions of the imagination: ictophobia, myconomascophobia, and talmatomania.

And these, of the body: ophalosis, icabulosis, mediatopathy and bellotalgia.

Want to name your baby? Or someone else's baby? Try Ginavietta Xilly Anganelel or Ferandulde Hommanloco Kictortick.

When taking new therapeutics, never mix salivac and labromine. And don't forget that abadarone is best taken on an empty stomach.

And nothing increases the chance of getting that grant funded than proposing the study of a new –ome! We really need someone to looking into the femome and manome.