latest news

Distractions and amusements, with a sandwich and coffee.

Where am I supposed to go? Where was I supposed to know?
•
• get lost in questions
• more quotes

They serve as the form for The Outbreak Poems.

Numbers are a lot of fun. They can start conversations—the interesting number paradox is a party favourite: every number must be interesting because the first number that wasn't would be very interesting! Of course, in the wrong company they can just as easily end conversations.

The art here is my attempt at transforming famous numbers in mathematics into pretty visual forms, start some of these conversations and awaken emotions for mathematics—other than dislike and confusion

Numerology is bogus, but art based on numbers can be beautiful. Proclus got it right when he said (as quoted by M. Kline in *Mathematical Thought from Ancient to Modern Times*)

Wherever there is number, there is beauty.

—Proclus Diadochus

The consequence of the interesting number paradox is that all numbers are interesting. But some are more interesting than others—how Orwellian!

All animals are equal, but some animals are more equal than others.

—George Orwell (Animal Farm)

Numbers such as `\pi` (or `\tau` if you're a revolutionary), `\phi`, `e`, `i = \sqrt{-1}`, and `0` have captivated imagination. Chances are at least one of them appears in the next physics equation you come across.

π φ e

= 3.14159 26535 89793 23846 26433 83279 50288 41971 69399 ... = 1.61803 39887 49894 84820 45868 34365 63811 77203 09179 ... = 2.71828 18284 59045 23536 02874 71352 66249 77572 47093 ...

Of these three transcendental numbers, `\pi` (3.14159265...) is the most well known. It is the ratio of a circle's circumference to its diameter (`d = \pi r`) and appears in the formula for the area of the circle (`a = \pi r^2`).

The Golden Ratio (`\phi`, 1.61803398...) is the attractive proportion of values `a > b` that satisfy `{a+b}/2 = a/b`, which solves to `a/b = {1 + \sqrt{5}}/2`.

The last of the three numbers, `e` (2.71828182...) is Euler's number and also known as the base of the natural logarithm. It, too, can be defined geometrically—it is the unique real number, `e`, for which the function `f(x) = e^x` has a tangent of slope 1 at `x=0`. Like `\pi`, `e` appears throughout mathematics. For example, `e` is central in the expression for the normal distribution as well as the definition of entropy. And if you've ever heard of someone talking about log plots ... well, there's `e` again!

Two of these numbers can be seen together in mathematics' most beautiful equation, the Euler identity: `e^{i\pi} = -1`. The tau-oists would argue that this is even prettier: `e^{i\tau} = 1`.

Did you notice how the 13th digit of all three numbers is the same (9)? This accidental similarity generates its own number—the Accidental Similarity Number (ASN).

Our design on the cover of Nature Genetics's August 2020 issue is “Dichotomy of Chromatin in Color” . Thanks to Dr. Andy Mungall for suggesting this terrific title.

The cover design accompanies our report in the issue Gagliardi, A., Porter, V.L., Zong, Z. *et al.* (2020) Analysis of Ugandan cervical carcinomas identifies human papillomavirus clade–specific epigenome and transcriptome landscapes. *Nature Genetics* **52**:800–810.

*Clear, concise, legible and compelling.*

The PDF template is a poster about making posters. It provides design, typography and data visualiation tips with minimum fuss. Follow its advice until you have developed enough design sobriety and experience to know when to go your own way.

*Realistic models of epidemics account for latency, loss of immunity, births and deaths.*

We continue with our discussion about epidemic models and show how births, deaths and loss of immunity can create epidemic waves—a periodic fluctuation in the fraction of population that is infected.

This column has an interactive supplemental component (download code) that allows you to explore epidemic waves and introduces the idea of the phase plane, a compact way to understand the evolution of an epidemic over its entire course.

Bjørnstad, O.N., Shea, K., Krzywinski, M. & Altman, N. (2020) Points of significance: The SEIRS model for infectious disease dynamics. *Nature Methods* **17**:557–558.

Bjørnstad, O.N., Shea, K., Krzywinski, M. & Altman, N. (2020) Points of significance: Modeling infectious epidemics. *Nature Methods* **17**:455–456.

*Shifting soundscapes, textures and rhythmic loops produced by laboratory machines.*

In commemoration of the 20th anniversary of Canada's Michael Smith Genome Sciences Centre, Segue was commissioned to create an original composition based on audio recordings from the GSC's laboratory equipment, robots and computers—to make “music” from the noise they produce.

*Genetic sequences of the coronavirus tell story of when the virus arrived in each country and where it came from.*

Our graphic in Scientific American's Graphic Science section in the June 2020 issue shows a phylogenetic tree based on a snapshot of the data model from Nextstrain as of 31 March 2020.

Our design on the cover of Nature Cancer's April 2020 issue shows mutation spectra of patients from the POG570 cohort of 570 individuals with advanced metastatic cancer.

The cover design accompanies our report in the issue Pleasance, E., Titmuss, E., Williamson, L. et al. (2020) Pan-cancer analysis of advanced patient tumors reveals interactions between therapy and genomic landscapes. *Nat Cancer* **1**:452–468.