latest news

Distractions and amusements, with a sandwich and coffee.

Poetry is just the evidence of life. If your life is burning well, poetry is just the ash
•
• burn something
• more quotes

They serve as the form for The Outbreak Poems.

The never-repeating digits of `\pi` can be approximated by `22/7 = 3.142857`

to within 0.04%. These pages artistically and mathematically explore rational approximations to `\pi`. This 22/7 ratio is celebrated each year on July 22nd. If you like hand waving or back-of-envelope mathematics, this day is for you: `\pi` approximation day!

Want more math + art? Discover the Accidental Similarity Number. Find humor in my poster of the first 2,000 4s of `\pi`.

Curiously, the 22/7 rational approximation of `\pi` is more accurate (to within 0.04%) than using the first three digits `3.14`

, which are accurate to 0.05%.

It seems that `\pi` Approximation Day is 20% more accurate (verify on Wolfram Alpha)! And therefore definitely worth celebrating. $$ \frac{(\pi-3.14)-(22/7-\pi)}{\pi-3.14} = 0.206 $$

The poster shows the accuracy of 10,000 rational approximations of `\pi` for each `m/n` and `m=1...10000`. Read about the details of the method.

These posters show warped circles, which embody the 22/7 approximation of `\pi`, using a retro 1970's color scheme. Read about the details of the method.

*Clear, concise, legible and compelling.*

Making a scientific graphical abstract? Refer to my practical design guidelines and redesign examples to improve organization, design and clarity of your graphical abstracts.

An in-depth look at my process of reacting to a bad figure — how I design a poster and tell data stories.

Building on the method I used to analyze the 2008, 2012 and 2016 U.S. Presidential and Vice Presidential debates, I explore word usagein the 2020 Debates between Donald Trump and Joe Biden.

We are celebrating the publication of our 50th column!

To all our coauthors — thank you and see you in the next column!

*When modelling epidemics, some uncertainties matter more than others.*

Public health policy is always hampered by uncertainty. During a novel outbreak, nearly everything will be uncertain: the mode of transmission, the duration and population variability of latency, infection and protective immunity and, critically, whether the outbreak will fade out or turn into a major epidemic.

The uncertainty may be structural (which model?), parametric (what is `R_0`?), and/or operational (how well do masks work?).

This month, we continue our exploration of epidemiological models and look at how uncertainty affects forecasts of disease dynamics and optimization of intervention strategies.

We show how the impact of the uncertainty on any choice in strategy can be expressed using the Expected Value of Perfect Information (EVPI), which is the potential improvement in outcomes that could be obtained if the uncertainty is resolved before making a decision on the intervention strategy. In other words, by how much could we potentially increase effectiveness of our choice (e.g. lowering total disease burden) if we knew which model best reflects reality?

This column has an interactive supplemental component (download code) that allows you to explore the impact of uncertainty in `R_0` and immunity duration on timing and size of epidemic waves and the total burden of the outbreak and calculate EVPI for various outbreak models and scenarios.

Bjørnstad, O.N., Shea, K., Krzywinski, M. & Altman, N. (2020) Points of significance: Uncertainty and the management of epidemics. *Nature Methods* **17**.

Bjørnstad, O.N., Shea, K., Krzywinski, M. & Altman, N. (2020) Points of significance: Modeling infectious epidemics. *Nature Methods* **17**:455–456.

Bjørnstad, O.N., Shea, K., Krzywinski, M. & Altman, N. (2020) Points of significance: The SEIRS model for infectious disease dynamics. *Nature Methods* **17**:557–558.

Our design on the cover of Nature Genetics's August 2020 issue is “Dichotomy of Chromatin in Color” . Thanks to Dr. Andy Mungall for suggesting this terrific title.

The cover design accompanies our report in the issue Gagliardi, A., Porter, V.L., Zong, Z. *et al.* (2020) Analysis of Ugandan cervical carcinomas identifies human papillomavirus clade–specific epigenome and transcriptome landscapes. *Nature Genetics* **52**:800–810.