Martin Krzywinski / Canada's Michael Smith Genome Sciences Centre / mkweb.bcgsc.ca Martin Krzywinski / Canada's Michael Smith Genome Sciences Centre / mkweb.bcgsc.ca - contact me Martin Krzywinski / Canada's Michael Smith Genome Sciences Centre / mkweb.bcgsc.ca on Twitter Martin Krzywinski / Canada's Michael Smith Genome Sciences Centre / mkweb.bcgsc.ca - Lumondo Photography Martin Krzywinski / Canada's Michael Smith Genome Sciences Centre / mkweb.bcgsc.ca - Pi Art Martin Krzywinski / Canada's Michael Smith Genome Sciences Centre / mkweb.bcgsc.ca - Hilbertonians - Creatures on the Hilbert CurveMartin Krzywinski / Canada's Michael Smith Genome Sciences Centre / mkweb.bcgsc.ca - Pi Day 2020 - Piku
Love itself became the object of her love.Jonathan Safran Foercount sadnessesmore quotes

similarity: fun


The Outbreak Poems — artistic emissions in a pandemic


visualization + design

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
A `\pi` day music video!: Transcendental Tree Map premieres on 2020 Pi Day from Max Cooper's Yearning for the Infinite. Animation by Nick Cobby and myself. Watch live from Barbican Centre.
Music video of the “Transcendental Tree Map” Max Cooper's Yearning for the Infinite album. This video premiered on 2020 Pi Day. Music by Max Cooper. Animation by Nick Cobby and myself.
Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
The 2020 Pi Day art celebrates digits of `\pi` with piku (パイク) —poetry inspired by haiku.
They serve as the form for The Outbreak Poems.
Tau Day tree map animation of 8,909 digits of `\tau = 2 \pi` created with 40,015 lines. The video is 6:28 minutes long.

The art of Pi (`\pi`), Phi (`\phi`) and `e`


Pi Art Posters
 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
2019 `\pi` has hundreds of digits, hundreds of languages and a special kids' edition.

Pi Art Posters
 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
2018 `\pi` day

Pi Art Posters
 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
2017 `\pi` day

Pi Art Posters
 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
2016 `\pi` approximation day

Pi Art Posters
 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
2016 `\pi` day

Pi Art Posters
 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
2015 `\pi` day

Pi Art Posters
 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
2014 `\pi` approx day

Pi Art Posters
 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
2014 `\pi` day

Pi Art Posters
 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
2013 `\pi` day

Pi Art Posters
 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Circular `\pi` art

Numbers are a lot of fun. They can start conversations—the interesting number paradox is a party favourite: every number must be interesting because the first number that wasn't would be very interesting! Of course, in the wrong company they can just as easily end conversations.

is π normal?

It is not yet known whether the digits of π are normal—determining this is an important problem in mathematics. In other words, is the distribution of digit frequencies in π uniform? Do each of the digits 0–9 appear exactly 1/10th of the time, does every two-digit string appear exactly 1/100th of the time and so on for every finite-length string1?

1 One interesting finite-length string is the 6-digit Fenyman Point (...999999...) which appears at digit 762 in π. The Feynman Point was the subject of 2014 `\pi` Day art.

This question can be posed for different representations of π—in different bases. The distribution frequencies of 1/10, 1/100, and so on above refer to the representation of π in base 10. This is the way we're used to seeing numbers. However, if π is encoded as binary (base 2), would all the digits in 11.00100100001111... be normal? The table below shows the first several digits of π in each base from 2 to 16, as well as the natural logarithm base, `e`.

base, `b``\pi_b`base, `b``\pi_b`
211.00100100001111 103.14159265358979
310.01021101222201 113.16150702865A48
43.02100333122220 123.184809493B9186
53.03232214303343 133.1AC1049052A2C7
63.05033005141512 143.1DA75CDA813752
73.06636514320361 153.21CD1DC46C2B7A
83.11037552421026 163.243F6A8885A300
`e`10.10100202000211
source: virtuescience.com

Because the digits in the numbers are essentially random (this is a conjecture), the essence of the art is based on randomness.

A vexing consequence of π being normal is that, because it is non-terminating, π would contain all patterns. Any word you might think of, encoded into numbers in any way, would appear infinitely many times. The entire works of Shakespeare, too. As well, all his plays in which each sentence is reversed, or has one spelling mistake, or two! In fact, you would eventually find π within π, but only if you have infinite patience.

This is why any attempts to use the digits of `\pi` to infer meaning about anything is ridiculous. The exact opposite of what you find is also in `\pi`.

Stoneham's constant

A number can be normal in one base, but another. For example, Stoneham's constant,

`\alpha_{2,3} = 1/2 + 1/(2^{3^1} 3^1) + 1/(2^{3^2} 3^2) + 1/(2^{3^3} 3^3) + ... + 1/(2^{3^k} 3^k) + ... `

is 0.54188368083150298507... in base 10 and 0.100010101011100011100011100... in base 2.

Stoneham's constant is provably normal in base 2. In some other bases, such 6, Stoneham's constant is provably not normal.

VIEW ALL

news + thoughts

Points of Significance celebrates 50th column

Mon 24-08-2020

We are celebrating the publication of our 50th column!

To all our coauthors — thank you and see you in the next column!

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Nature Methods Points of Significance: Celebrating 50 columns of clear explanations of statistics. (read)

Uncertainty and the management of epidemics

Mon 24-08-2020

When modelling epidemics, some uncertainties matter more than others.

Public health policy is always hampered by uncertainty. During a novel outbreak, nearly everything will be uncertain: the mode of transmission, the duration and population variability of latency, infection and protective immunity and, critically, whether the outbreak will fade out or turn into a major epidemic.

The uncertainty may be structural (which model?), parametric (what is `R_0`?), and/or operational (how well do masks work?).

This month, we continue our exploration of epidemiological models and look at how uncertainty affects forecasts of disease dynamics and optimization of intervention strategies.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Nature Methods Points of Significance column: Uncertainty and the management of epidemics. (read)

We show how the impact of the uncertainty on any choice in strategy can be expressed using the Expected Value of Perfect Information (EVPI), which is the potential improvement in outcomes that could be obtained if the uncertainty is resolved before making a decision on the intervention strategy. In other words, by how much could we potentially increase effectiveness of our choice (e.g. lowering total disease burden) if we knew which model best reflects reality?

This column has an interactive supplemental component (download code) that allows you to explore the impact of uncertainty in `R_0` and immunity duration on timing and size of epidemic waves and the total burden of the outbreak and calculate EVPI for various outbreak models and scenarios.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Nature Methods Points of Significance column: Uncertainty and the management of epidemics. (Interactive supplemental materials)

Bjørnstad, O.N., Shea, K., Krzywinski, M. & Altman, N. (2020) Points of significance: Uncertainty and the management of epidemics. Nature Methods 17.

Background reading

Bjørnstad, O.N., Shea, K., Krzywinski, M. & Altman, N. (2020) Points of significance: Modeling infectious epidemics. Nature Methods 17:455–456.

Bjørnstad, O.N., Shea, K., Krzywinski, M. & Altman, N. (2020) Points of significance: The SEIRS model for infectious disease dynamics. Nature Methods 17:557–558.

Cover of Nature Genetics August 2020

Mon 03-08-2020

Our design on the cover of Nature Genetics's August 2020 issue is “Dichotomy of Chromatin in Color” . Thanks to Dr. Andy Mungall for suggesting this terrific title.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Dichotomy of Chromatin in Color. Nature Genetics, August 2020 issue. (read more)

The cover design accompanies our report in the issue Gagliardi, A., Porter, V.L., Zong, Z. et al. (2020) Analysis of Ugandan cervical carcinomas identifies human papillomavirus clade–specific epigenome and transcriptome landscapes. Nature Genetics 52:800–810.

Poster Design Guidelines

Wed 15-07-2020

Clear, concise, legible and compelling.

The PDF template is a poster about making posters. It provides design, typography and data visualiation tips with minimum fuss. Follow its advice until you have developed enough design sobriety and experience to know when to go your own way.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Poster Design Guidelines — Clear, concise, legible and compelling..

The SEIRS model for infectious disease dynamics

Thu 18-06-2020

Realistic models of epidemics account for latency, loss of immunity, births and deaths.

We continue with our discussion about epidemic models and show how births, deaths and loss of immunity can create epidemic waves—a periodic fluctuation in the fraction of population that is infected.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Nature Methods Points of Significance column: The SEIRS model for infectious disease dynamics. (read)

This column has an interactive supplemental component (download code) that allows you to explore epidemic waves and introduces the idea of the phase plane, a compact way to understand the evolution of an epidemic over its entire course.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Nature Methods Points of Significance column: The SEIRS model for infectious disease dynamics. (Interactive supplemental materials)

Bjørnstad, O.N., Shea, K., Krzywinski, M. & Altman, N. (2020) Points of significance: The SEIRS model for infectious disease dynamics. Nature Methods 17:557–558.

Background reading

Bjørnstad, O.N., Shea, K., Krzywinski, M. & Altman, N. (2020) Points of significance: Modeling infectious epidemics. Nature Methods 17:455–456.

Gene Machines

Fri 05-06-2020

Shifting soundscapes, textures and rhythmic loops produced by laboratory machines.

In commemoration of the 20th anniversary of Canada's Michael Smith Genome Sciences Centre, Segue was commissioned to create an original composition based on audio recordings from the GSC's laboratory equipment, robots and computers—to make “music” from the noise they produce.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Gene Machines by Segue. Now available on vinyl.