Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - contact me Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca on Twitter Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - Lumondo Photography Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - Pi Art Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - Hilbertonians - Creatures on the Hilbert Curve
Poetry is just the evidence of life. If your life is burning well, poetry is just the ashLeonard Cohenburn somethingmore quotes

circles: exciting


In Silico Flurries: Computing a world of snow. Scientific American. 23 December 2017


visualization + design

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
The 2018 Pi Day art celebrates the 30th anniversary of `\pi` day and connects friends stitching road maps from around the world. Pack a sandwich and let's go!

The art of Pi (`\pi`), Phi (`\phi`) and `e`


Pi Art Posters
 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
2018 `\pi` day shrinks the world and celebrates road trips by stitching streets from around the world together. In this version, we look at the boonies, burbs and boutique of `\pi` by drawing progressively denser patches of streets. Let's go places.

Pi Art Posters
 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
2017 `\pi` day

Pi Art Posters
 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
2016 `\pi` approximation day

Pi Art Posters
 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
2016 `\pi` day

Pi Art Posters
 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
2015 `\pi` day

Pi Art Posters
 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
2014 `\pi` approx day

Pi Art Posters
 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
2014 `\pi` day

Pi Art Posters
 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
2013 `\pi` day

Pi Art Posters
 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Circular `\pi` art

Numbers are a lot of fun. They can start conversations—the interesting number paradox is a party favourite: every number must be interesting because the first number that wasn't would be very interesting! Of course, in the wrong company they can just as easily end conversations.

is π normal?

It is not yet known whether the digits of π are normal—determining this is an important problem in mathematics. In other words, is the distribution of digit frequencies in π uniform? Do each of the digits 0–9 appear exactly 1/10th of the time, does every two-digit string appear exactly 1/100th of the time and so on for every finite-length string1?

1 One interesting finite-length string is the 6-digit Fenyman Point (...999999...) which appears at digit 762 in π. The Feynman Point was the subject of 2014 `\pi` Day art.

This question can be posed for different representations of π—in different bases. The distribution frequencies of 1/10, 1/100, and so on above refer to the representation of π in base 10. This is the way we're used to seeing numbers. However, if π is encoded as binary (base 2), would all the digits in 11.00100100001111... be normal? The table below shows the first several digits of π in each base from 2 to 16, as well as the natural logarithm base, `e`.

base, `b``\pi_b`base, `b``\pi_b`
211.00100100001111 103.14159265358979
310.01021101222201 113.16150702865A48
43.02100333122220 123.184809493B9186
53.03232214303343 133.1AC1049052A2C7
63.05033005141512 143.1DA75CDA813752
73.06636514320361 153.21CD1DC46C2B7A
83.11037552421026 163.243F6A8885A300
`e`10.10100202000211
source: virtuescience.com

Because the digits in the numbers are essentially random (this is a conjecture), the essence of the art is based on randomness.

A vexing consequence of π being normal is that, because it is non-terminating, π would contain all patterns. Any word you might think of, encoded into numbers in any way, would appear infinitely many times. The entire works of Shakespeare, too. As well, all his plays in which each sentence is reversed, or has one spelling mistake, or two! In fact, you would eventually find π within π, but only if you have infinite patience.

This is why any attempts to use the digits of `\pi` to infer meaning about anything is ridiculous. The exact opposite of what you find is also in `\pi`.

Stoneham's constant

A number can be normal in one base, but another. For example, Stoneham's constant,

`\alpha_{2,3} = 1/2 + 1/(2^{3^1} 3^1) + 1/(2^{3^2} 3^2) + 1/(2^{3^3} 3^3) + ... + 1/(2^{3^k} 3^k) + ... `

is 0.54188368083150298507... in base 10 and 0.100010101011100011100011100... in base 2.

Stoneham's constant is provably normal in base 2. In some other bases, such 6, Stoneham's constant is provably not normal.

VIEW ALL

news + thoughts

Molecular Case Studies Cover

Fri 06-07-2018

The theme of the April issue of Molecular Case Studies is precision oncogenomics. We have three papers in the issue based on work done in our Personalized Oncogenomics Program (POG).

The covers of Molecular Case Studies typically show microscopy images, with some shown in a more abstract fashion. There's also the occasional Circos plot.

I've previously taken a more fine-art approach to cover design, such for those of Nature, Genome Research and Trends in Genetics. I've used microscopy images to create a cover for PNAS—the one that made biology look like astrophysics—and thought that this is kind of material I'd start with for the MCS cover.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Cover design for Apr 2018 issue of Molecular Case Studies. (details)

Happy 2018 `\tau` Day—Art for everyone

Wed 27-06-2018
Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
You know what day it is. (details)

Universe Superclusters and Voids

Mon 25-06-2018

A map of the nearby superclusters and voids in the Unvierse.

By "nearby" I mean within 6,000 million light-years.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
The Universe — Superclustesr and Voids. The two supergalactic hemispheres showing Abell clusters, superclusters and voids within a distance of 6,000 million light-years from the Milky Way. (details)

Datavis for your feet—the 178.75 lb socks

Sat 23-06-2018

In the past, I've been tangentially involved in fashion design. I've also been more directly involved in fashion photography.

It was now time to design my first ... pair of socks.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Some datavis for your feet: the 178.75 lb socks. (get some)

In collaboration with Flux Socks, the design features the colors and relative thicknesses of Rogue olympic weightlifting plates. The first four plates in the stack are the 55, 45, 35, and 25 competition plates. The top 4 plates are the 10, 5, 2.5 and 1.25 lb change plates.

The perceived weight of each sock is 178.75 lb and 357.5 lb for the pair.

The actual weight is much less.

Genes Behind Psychiatric Disorders

Sun 24-06-2018

Find patterns behind gene expression and disease.

Expression, correlation and network module membership of 11,000+ genes and 5 psychiatric disorders in about 6" x 7" on a single page.

Design tip: Stay calm.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
An analysis of dust reveals how the presence of men, women, dogs and cats affects the variety of bacteria in a household. Appears on Graphic Science page in December 2015 issue of Scientific American.

More of my American Scientific Graphic Science designs

Gandal M.J. et al. Shared Molecular Neuropathology Across Major Psychiatric Disorders Parallels Polygenic Overlap Science 359 693–697 (2018)

Curse(s) of dimensionality

Tue 05-06-2018
There is such a thing as too much of a good thing.

We discuss the many ways in which analysis can be confounded when data has a large number of dimensions (variables). Collectively, these are called the "curses of dimensionality".

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Nature Methods Points of Significance column: Curse(s) of dimensionality. (read)

Some of these are unintuitive, such as the fact that the volume of the hypersphere increases and then shrinks beyond about 7 dimensions, while the volume of the hypercube always increases. This means that high-dimensional space is "mostly corners" and the distance between points increases greatly with dimension. This has consequences on correlation and classification.

Altman, N. & Krzywinski, M. (2018) Points of significance: Curse(s) of dimensionality Nature Methods 15:399–400.