latest news

Distractions and amusements, with a sandwich and coffee.

Trance opera—Spente le Stelle
• be dramatic
• more quotes

The never-repeating digits of `\pi` can be approximated by `22/7 = 3.142857`

to within 0.04%. These pages artistically and mathematically explore rational approximations to `\pi`. This 22/7 ratio is celebrated each year on July 22nd. If you like hand waving or back-of-envelope mathematics, this day is for you: `\pi` approximation day!

Want more math + art? Discover the Accidental Similarity Number. Find humor in my poster of the first 2,000 4s of `\pi`.

There are two kinds of `\pi` Approximation Day posters.

The first uses the Archimedean spiral for its design, which I've used before for other numerical art. The second packs warped circles, whose ratio of circumference to average diameter is `22/7` into what I call `\pi`-approximate circular packing.

As you probably know, the ratio of the circumference of a circle to its diameter is `\pi`. $$ C / d = \pi $$

For `\pi` approximation day, let's ask what would happen if $$ C / d = 22/7 $$

where now `C` is the circumference of some shape other than a circle. What could this shape be?

A good place to start is to think about an ellipse. I've done this before in the 22/7 Universe article, in which I considered an ellipse with a major axis of `r+\delta` and a minor axis of `r` and solved for `\delta` such that the circumference of the ellipse divided by `2 r` would be `22/7`. Doing so means numerically solving the equation $$ \frac{C(r,r+\delta)}{2r} = 22/7 $$

where `r + \delta` is the major axis, `r` is the minor axis and `C(r,r+\delta)` is the circumference of the ellipse. Substituting the expression for the circumference, $$ 4(r+\delta) \int_0^{\pi/2} \sqrt { 1 - \left(1-\frac{r}{(r+\delta)^2}\right)\sin^2 \theta } d \theta = 2 r \frac{22}{7}$$

If we set `r=1` and solve it turns out that only a very minor deformation is required and `\delta = 0.0008`. You can verify this at Wolfram Alpha.

I wanted to make some art based on the shape of the this ellipse, but a deformation of 0.08% is not perceptible. So I came up with a slightly different approach to how I define the original circumference-to-diameter ratio.

Instead of treating the diameter as `r` and using `r + \delta` as the major axis, I now define the diameter as twice the average radius, or `2r + \delta`. This means that the equation to solve is $$ \frac{C(r,r+\delta)}{2r+\delta} = 22/7 $$

As before, setting `r=1` and substituting the expression for the circumference of an ellipse, we get $$ 4(1+\delta) \int_0^{\pi/2} \sqrt { 1 - \left(1-\frac{1}{(1+\delta)^2}\right)\sin^2 \theta } d \theta = (2+\delta) \frac{22}{7}$$

and solving this for `\delta` find $$ \delta = 0.083599769... $$

You can verify this at Wolfram Alpha.

This is a more useable approach since an 8% warping of a circle can be easily perceived.

Below is matrix of perfect circles along side the 8% deformed circles.

The art posters are based on a packing of these deformed circles.

By superimposing perfect circles on the warped circles, fun patterns appear.

If you pack perfect circles perfectly, the area occupied by the circles is `\pi/4 = 78.5%`.

What is the area occupied by perfect packing of warped and randomly rotated (like in the posters) circles?

To motivate choice of colors, I chose images with a 1970's feel.

Using my color summarizer, I analyzed each image for its representative colors. Using these colors and their proportions, I colored the perfect and warped circles.

For each poster of these color schemes, two poster versions are available. In one, the perfect cirlces are shown with warped circles as a clip mask. In the other, warped circles are shown, clipped by perfect circles.

One of my color tools, the `colorsnap`

application snaps colors in an image to a set of reference colors and reports their proportion.

Below is Times Square rendered using the colors of the MTA subway lines.

*Drugs could be more effective if taken when the genetic proteins they target are most active.*

Design tip: rediscover CMYK primaries.

More of my American Scientific Graphic Science designs

Ruben et al. A database of tissue-specific rhythmically expressed human genes has potential applications in circadian medicine *Science Translational Medicine* **10** Issue 458, eaat8806.

We focus on the important distinction between confidence intervals, typically used to express uncertainty of a sampling statistic such as the mean and, prediction and tolerance intervals, used to make statements about the next value to be drawn from the population.

Confidence intervals provide coverage of a single point—the population mean—with the assurance that the probability of non-coverage is some acceptable value (e.g. 0.05). On the other hand, prediction and tolerance intervals both give information about typical values from the population and the percentage of the population expected to be in the interval. For example, a tolerance interval can be configured to tell us what fraction of sampled values (e.g. 95%) will fall into an interval some fraction of the time (e.g. 95%).

Altman, N. & Krzywinski, M. (2018) Points of significance: Predicting with confidence and tolerance *Nature Methods* **15**:843–844.

Krzywinski, M. & Altman, N. (2013) Points of significance: Importance of being uncertain. Nature Methods 10:809–810.

A 4-day introductory course on genome data parsing and visualization using Circos. Prepared for the Bioinformatics and Genome Analysis course in Institut Pasteur Tunis, Tunis, Tunisia.

Data visualization should be informative and, where possible, tasty.

Stefan Reuscher from Bioscience and Biotechnology Center at Nagoya University celebrates a publication with a Circos cake.

The cake shows an overview of a de-novo assembled genome of a wild rice species *Oryza longistaminata*.

The presence of constraints in experiments, such as sample size restrictions, awkward blocking or disallowed treatment combinations may make using classical designs very difficult or impossible.

Optimal design is a powerful, general purpose alternative for high quality, statistically grounded designs under nonstandard conditions.

We discuss two types of optimal designs (D-optimal and I-optimal) and show how it can be applied to a scenario with sample size and blocking constraints.

Smucker, B., Krzywinski, M. & Altman, N. (2018) Points of significance: Optimal experimental design *Nature Methods* **15**:599–600.

Krzywinski, M., Altman, N. (2014) Points of significance: Two factor designs. Nature Methods 11:1187–1188.

Krzywinski, M. & Altman, N. (2014) Points of significance: Analysis of variance (ANOVA) and blocking. Nature Methods 11:699–700.

Krzywinski, M. & Altman, N. (2014) Points of significance: Designing comparative experiments. Nature Methods 11:597–598.