latest news

Distractions and amusements, with a sandwich and coffee.

Sun is on my face ...a beautiful day without you.
•
• be apart
• more quotes

The never-repeating digits of `\pi` can be approximated by `22/7 = 3.142857`

to within 0.04%. These pages artistically and mathematically explore rational approximations to `\pi`. This 22/7 ratio is celebrated each year on July 22nd. If you like hand waving or back-of-envelope mathematics, this day is for you: `\pi` approximation day!

Want more math + art? Discover the Accidental Similarity Number. Find humor in my poster of the first 2,000 4s of `\pi`.

There are two kinds of `\pi` Approximation Day posters.

The first uses the Archimedean spiral for its design, which I've used before for other numerical art. The second packs warped circles, whose ratio of circumference to average diameter is `22/7` into what I call `\pi`-approximate circular packing.

As you probably know, the ratio of the circumference of a circle to its diameter is `\pi`. $$ C / d = \pi $$

For `\pi` approximation day, let's ask what would happen if $$ C / d = 22/7 $$

where now `C` is the circumference of some shape other than a circle. What could this shape be?

A good place to start is to think about an ellipse. I've done this before in the 22/7 Universe article, in which I considered an ellipse with a major axis of `r+\delta` and a minor axis of `r` and solved for `\delta` such that the circumference of the ellipse divided by `2 r` would be `22/7`. Doing so means numerically solving the equation $$ \frac{C(r,r+\delta)}{2r} = 22/7 $$

where `r + \delta` is the major axis, `r` is the minor axis and `C(r,r+\delta)` is the circumference of the ellipse. Substituting the expression for the circumference, $$ 4(r+\delta) \int_0^{\pi/2} \sqrt { 1 - \left(1-\frac{r}{(r+\delta)^2}\right)\sin^2 \theta } d \theta = 2 r \frac{22}{7}$$

If we set `r=1` and solve it turns out that only a very minor deformation is required and `\delta = 0.0008`. You can verify this at Wolfram Alpha.

I wanted to make some art based on the shape of the this ellipse, but a deformation of 0.08% is not perceptible. So I came up with a slightly different approach to how I define the original circumference-to-diameter ratio.

Instead of treating the diameter as `r` and using `r + \delta` as the major axis, I now define the diameter as twice the average radius, or `2r + \delta`. This means that the equation to solve is $$ \frac{C(r,r+\delta)}{2r+\delta} = 22/7 $$

As before, setting `r=1` and substituting the expression for the circumference of an ellipse, we get $$ 4(1+\delta) \int_0^{\pi/2} \sqrt { 1 - \left(1-\frac{1}{(1+\delta)^2}\right)\sin^2 \theta } d \theta = (2+\delta) \frac{22}{7}$$

and solving this for `\delta` find $$ \delta = 0.083599769... $$

You can verify this at Wolfram Alpha.

This is a more useable approach since an 8% warping of a circle can be easily perceived.

Below is matrix of perfect circles along side the 8% deformed circles.

The art posters are based on a packing of these deformed circles.

By superimposing perfect circles on the warped circles, fun patterns appear.

If you pack perfect circles perfectly, the area occupied by the circles is `\pi/4 = 78.5%`.

What is the area occupied by perfect packing of warped and randomly rotated (like in the posters) circles?

To motivate choice of colors, I chose images with a 1970's feel.

Using my color summarizer, I analyzed each image for its representative colors. Using these colors and their proportions, I colored the perfect and warped circles.

For each poster of these color schemes, two poster versions are available. In one, the perfect cirlces are shown with warped circles as a clip mask. In the other, warped circles are shown, clipped by perfect circles.

My cover design on the 11 April 2022 Cancer Cell issue depicts depicts cellular heterogeneity as a kaleidoscope generated from immunofluorescence staining of the glial and neuronal markers MBP and NeuN (respectively) in a GBM patient-derived explant.

LeBlanc VG *et al.* Single-cell landscapes of primary glioblastomas and matched explants and cell lines show variable retention of inter- and intratumor heterogeneity (2022) *Cancer Cell* **40**:379–392.E9.

Browse my gallery of cover designs.

My cover design on the 4 April 2022 Nature Biotechnology issue is an impression of a phylogenetic tree of over 200 million sequences.

Konno N *et al.* Deep distributed computing to reconstruct extremely large lineage trees (2022) *Nature Biotechnology* **40**:566–575.

Browse my gallery of cover designs.

My cover design on the 17 March 2022 Nature issue depicts the evolutionary properties of sequences at the extremes of the evolvability spectrum.

Vaishnav ED *et al.* The evolution, evolvability and engineering of gene regulatory DNA (2022) *Nature* **603**:455–463.

Browse my gallery of cover designs.

three one four: a number of notes

Celebrate `\pi` Day (March 14th) and finally hear what you've been missing.

“three one four: a number of notes” is a musical exploration of how we think about mathematics and how we feel about mathematics. It tells stories from the very beginning (314…) to the very (known) end of π (...264) as well as math (Wallis Product) and math jokes (Feynman Point), repetition (nn) and zeroes (null).

The album is scored for solo piano in the style of 20th century classical music – each piece has a distinct personality, drawn from styles of Boulez, Feldman, Glass, Ligeti, Monk, and Satie.

Each piece is accompanied by a piku (or πku), a poem whose syllable count is determined by a specific sequence of digits from π.

Check out art from previous years: 2013 `\pi` Day and 2014 `\pi` Day, 2015 `\pi` Day, 2016 `\pi` Day, 2017 `\pi` Day, 2018 `\pi` Day, 2019 `\pi` Day, 2020 `\pi` Day and 2021 `\pi` Day.

My design appears on the 25 January 2022 PNAS issue.

The cover shows a view of Earth that captures the vision of the Earth BioGenome Project — understanding and conserving genetic diversity on a global scale. Continents from the Authagraph projection, which preserves areas and shapes, are represented as a double helix of 32,111 bases. Short sequences of 806 unique species, sequenced as part of EBP-affiliated projects, are mapped onto the double helix of the continent (or ocean) where the species is commonly found. The length of the sequence is the same for each species on a continent (or ocean) and the sequences are separated by short gaps. Individual bases of the sequence are colored by dots. Species appear along the path in alphabetical order (by Latin name) and the first base of the first species is identified by a small black triangle.

Lewin HA et al. The Earth BioGenome Project 2020: Starting the clock. (2022) PNAS 119(4) e2115635118.

As part of the COVID Charts series, I fix a muddled and storyless graphic tweeted by Adrian Dix, Canada's Health Minister.

I show you how to fix color schemes to make them colorblind-accessible and effective in revealing patters, how to reduce redundancy in labels (a key but overlooked part of many visualizations) and how to extract a story out of a table to frame the narrative.