Distractions and amusements, with a sandwich and coffee.
The never-repeating digits of `\pi` can be approximated by 22/7 = 3.142857
to within 0.04%. These pages artistically and mathematically explore rational approximations to `\pi`. This 22/7 ratio is celebrated each year on July 22nd. If you like hand waving or back-of-envelope mathematics, this day is for you: `\pi` approximation day!
There are two kinds of `\pi` Approximation Day posters.
The first uses the Archimedean spiral for its design, which I've used before for other numerical art. The second packs warped circles, whose ratio of circumference to average diameter is `22/7` into what I call `\pi`-approximate circular packing.
In the Approximation Day poster, all `m/n` rational approximations to `\pi` are shown as circles on a spiral. The circle at the start of the spiral (top) corresponds to `m=1`. The circle at the center of the spiral corresponds to `m=10000`.
Each circle is colored by the accuracy of the best possible approximation `m/n` according to the color scheme below, which is the legend inset. For example, for `m=22` the best approximation has `n=7`.
The accuracy cutoffs were selected to assign roughly the same number of points to each category.
The location of the best approximations within each accuracy window is shown below.
One of my color tools, the colorsnap
application snaps colors in an image to a set of reference colors and reports their proportion.
Below is Times Square rendered using the colors of the MTA subway lines.
Colors used by the New York MTA subway lines.
Drugs could be more effective if taken when the genetic proteins they target are most active.
Design tip: rediscover CMYK primaries.
More of my American Scientific Graphic Science designs
Ruben et al. A database of tissue-specific rhythmically expressed human genes has potential applications in circadian medicine Science Translational Medicine 10 Issue 458, eaat8806.
We focus on the important distinction between confidence intervals, typically used to express uncertainty of a sampling statistic such as the mean and, prediction and tolerance intervals, used to make statements about the next value to be drawn from the population.
Confidence intervals provide coverage of a single point—the population mean—with the assurance that the probability of non-coverage is some acceptable value (e.g. 0.05). On the other hand, prediction and tolerance intervals both give information about typical values from the population and the percentage of the population expected to be in the interval. For example, a tolerance interval can be configured to tell us what fraction of sampled values (e.g. 95%) will fall into an interval some fraction of the time (e.g. 95%).
Altman, N. & Krzywinski, M. (2018) Points of significance: Predicting with confidence and tolerance Nature Methods 15:843–844.
Krzywinski, M. & Altman, N. (2013) Points of significance: Importance of being uncertain. Nature Methods 10:809–810.
A 4-day introductory course on genome data parsing and visualization using Circos. Prepared for the Bioinformatics and Genome Analysis course in Institut Pasteur Tunis, Tunis, Tunisia.
Data visualization should be informative and, where possible, tasty.
Stefan Reuscher from Bioscience and Biotechnology Center at Nagoya University celebrates a publication with a Circos cake.
The cake shows an overview of a de-novo assembled genome of a wild rice species Oryza longistaminata.
The presence of constraints in experiments, such as sample size restrictions, awkward blocking or disallowed treatment combinations may make using classical designs very difficult or impossible.
Optimal design is a powerful, general purpose alternative for high quality, statistically grounded designs under nonstandard conditions.
We discuss two types of optimal designs (D-optimal and I-optimal) and show how it can be applied to a scenario with sample size and blocking constraints.
Smucker, B., Krzywinski, M. & Altman, N. (2018) Points of significance: Optimal experimental design Nature Methods 15:599–600.
Krzywinski, M., Altman, N. (2014) Points of significance: Two factor designs. Nature Methods 11:1187–1188.
Krzywinski, M. & Altman, N. (2014) Points of significance: Analysis of variance (ANOVA) and blocking. Nature Methods 11:699–700.
Krzywinski, M. & Altman, N. (2014) Points of significance: Designing comparative experiments. Nature Methods 11:597–598.