latest news

Distractions and amusements, with a sandwich and coffee.

Feel the vibe, feel the terror, feel the pain
•
• Mad about you, orchestrally.
• more quotes

This section contains various art work based on `\pi`, `\phi` and `e` that I created over the years.

Some of the numerical art reveals interesting and unexpected observations. For example, the sequence 999999 in π at digit 762 called the Feynman Point. Or that if you calculate π to 13,099,586 digits you will find love.

`\pi` day art and `\pi` approximation day art is kept separate.

Numerology is bogus, but art based on numbers is pretty, in a random and possibly normal way.

These pieces were generated using Circos by Cristian Ilies Vasile and myself.

A concept created for this visualization, the `i`-ness of a number measures how close each of its digits is to a given number, *i*.

The accidental similarity number (ASN) is a kind of overlap between numbers. I came up with this concept after creating typographical art about the 4ness of `\pi`.

Any properties of the ASN are accidental, but curiously ASN(`\pi`,`\phi`,`e`) ≈ 1.

Two-level factorial experiments, in which all combinations of multiple factor levels are used, efficiently estimate factor effects and detect interactions—desirable statistical qualities that can provide deep insight into a system.

They offer two benefits over the widely used one-factor-at-a-time (OFAT) experiments: efficiency and ability to detect interactions.

Since the number of factor combinations can quickly increase, one approach is to model only some of the factorial effects using empirically-validated assumptions of effect sparsity and effect hierarchy. Effect sparsity tells us that in factorial experiments most of the factorial terms are likely to be unimportant. Effect hierarchy tells us that low-order terms (e.g. main effects) tend to be larger than higher-order terms (e.g. two-factor or three-factor interactions).

Smucker, B., Krzywinski, M. & Altman, N. (2019) Points of significance: Two-level factorial experiments *Nature Methods* **16**:211–212.

Krzywinski, M. & Altman, N. (2014) Points of significance: Designing comparative experiments.. Nature Methods 11:597–598.

Digits, internationally

Celebrate `\pi` Day (March 14th) and set out on an exploration explore accents unknown (to you)!

This year is purely typographical, with something for everyone. Hundreds of digits and hundreds of languages.

A special kids' edition merges math with color and fat fonts.

Check out art from previous years: 2013 `\pi` Day and 2014 `\pi` Day, 2015 `\pi` Day, 2016 `\pi` Day, 2017 `\pi` Day and 2018 `\pi` Day.

One moment you're `:)`

and the next you're `:-.`

Make sense of it all with my Tree of Emotional life—a hierarchical account of how we feel.

One of my color tools, the `colorsnap`

application snaps colors in an image to a set of reference colors and reports their proportion.

Below is Times Square rendered using the colors of the MTA subway lines.

*Drugs could be more effective if taken when the genetic proteins they target are most active.*

Design tip: rediscover CMYK primaries.

More of my American Scientific Graphic Science designs

Ruben et al. A database of tissue-specific rhythmically expressed human genes has potential applications in circadian medicine *Science Translational Medicine* **10** Issue 458, eaat8806.

We focus on the important distinction between confidence intervals, typically used to express uncertainty of a sampling statistic such as the mean and, prediction and tolerance intervals, used to make statements about the next value to be drawn from the population.

Confidence intervals provide coverage of a single point—the population mean—with the assurance that the probability of non-coverage is some acceptable value (e.g. 0.05). On the other hand, prediction and tolerance intervals both give information about typical values from the population and the percentage of the population expected to be in the interval. For example, a tolerance interval can be configured to tell us what fraction of sampled values (e.g. 95%) will fall into an interval some fraction of the time (e.g. 95%).

Altman, N. & Krzywinski, M. (2018) Points of significance: Predicting with confidence and tolerance *Nature Methods* **15**:843–844.

Krzywinski, M. & Altman, N. (2013) Points of significance: Importance of being uncertain. Nature Methods 10:809–810.