latest news

Distractions and amusements, with a sandwich and coffee.

What do the trees know.
•
• sway, sway, sway
• more quotes

They serve as the form for The Outbreak Poems.

This section contains various art work based on `\pi`, `\phi` and `e` that I created over the years.

Some of the numerical art reveals interesting and unexpected observations. For example, the sequence 999999 in π at digit 762 called the Feynman Point. Or that if you calculate π to 13,099,586 digits you will find love.

`\pi` day art and `\pi` approximation day art is kept separate.

If you look hard enough, you can find anything.

In this case, you can find names of famous mathematicians and even the digits of mathematical constants in the digits of `\pi`. These posters are very similar to the Love in `\pi` series I did for the 2013 `\pi` day.

All of the efforts here are made ironically—`\pi` is believed to be normal and contains any and all conceivable sequences of digits.

Nevertheless, to satisfy my desire to create art based on typography, I've come up with a couple of straightforward schemes to stimulate the imagination while at the same time realizing the futility of the method itself.

We are celebrating the publication of our 50th column!

To all our coauthors — thank you and see you in the next column!

*When modelling epidemics, some uncertainties matter more than others.*

Public health policy is always hampered by uncertainty. During a novel outbreak, nearly everything will be uncertain: the mode of transmission, the duration and population variability of latency, infection and protective immunity and, critically, whether the outbreak will fade out or turn into a major epidemic.

The uncertainty may be structural (which model?), parametric (what is `R_0`?), and/or operational (how well do masks work?).

This month, we continue our exploration of epidemiological models and look at how uncertainty affects forecasts of disease dynamics and optimization of intervention strategies.

We show how the impact of the uncertainty on any choice in strategy can be expressed using the Expected Value of Perfect Information (EVPI), which is the potential improvement in outcomes that could be obtained if the uncertainty is resolved before making a decision on the intervention strategy. In other words, by how much could we potentially increase effectiveness of our choice (e.g. lowering total disease burden) if we knew which model best reflects reality?

This column has an interactive supplemental component (download code) that allows you to explore the impact of uncertainty in `R_0` and immunity duration on timing and size of epidemic waves and the total burden of the outbreak and calculate EVPI for various outbreak models and scenarios.

Bjørnstad, O.N., Shea, K., Krzywinski, M. & Altman, N. (2020) Points of significance: Uncertainty and the management of epidemics. *Nature Methods* **17**.

Bjørnstad, O.N., Shea, K., Krzywinski, M. & Altman, N. (2020) Points of significance: Modeling infectious epidemics. *Nature Methods* **17**:455–456.

Bjørnstad, O.N., Shea, K., Krzywinski, M. & Altman, N. (2020) Points of significance: The SEIRS model for infectious disease dynamics. *Nature Methods* **17**:557–558.

Our design on the cover of Nature Genetics's August 2020 issue is “Dichotomy of Chromatin in Color” . Thanks to Dr. Andy Mungall for suggesting this terrific title.

The cover design accompanies our report in the issue Gagliardi, A., Porter, V.L., Zong, Z. *et al.* (2020) Analysis of Ugandan cervical carcinomas identifies human papillomavirus clade–specific epigenome and transcriptome landscapes. *Nature Genetics* **52**:800–810.

*Clear, concise, legible and compelling.*

The PDF template is a poster about making posters. It provides design, typography and data visualiation tips with minimum fuss. Follow its advice until you have developed enough design sobriety and experience to know when to go your own way.

*Realistic models of epidemics account for latency, loss of immunity, births and deaths.*

We continue with our discussion about epidemic models and show how births, deaths and loss of immunity can create epidemic waves—a periodic fluctuation in the fraction of population that is infected.

This column has an interactive supplemental component (download code) that allows you to explore epidemic waves and introduces the idea of the phase plane, a compact way to understand the evolution of an epidemic over its entire course.

Bjørnstad, O.N., Shea, K., Krzywinski, M. & Altman, N. (2020) Points of significance: The SEIRS model for infectious disease dynamics. *Nature Methods* **17**:557–558.

Bjørnstad, O.N., Shea, K., Krzywinski, M. & Altman, N. (2020) Points of significance: Modeling infectious epidemics. *Nature Methods* **17**:455–456.

*Shifting soundscapes, textures and rhythmic loops produced by laboratory machines.*

In commemoration of the 20th anniversary of Canada's Michael Smith Genome Sciences Centre, Segue was commissioned to create an original composition based on audio recordings from the GSC's laboratory equipment, robots and computers—to make “music” from the noise they produce.