Martin Krzywinski / Genome Sciences Center / Martin Krzywinski / Genome Sciences Center / - contact me Martin Krzywinski / Genome Sciences Center / on Twitter Martin Krzywinski / Genome Sciences Center / - Lumondo Photography Martin Krzywinski / Genome Sciences Center / - Pi Art Martin Krzywinski / Genome Sciences Center / - Hilbertonians - Creatures on the Hilbert Curve
Here we are now at the middle of the fourth large part of this talk.Pepe Deluxeget nowheremore quotes

quotes: exciting

DNA on 10th — street art, wayfinding and font

art + literature

daily quotation server archives

In the late 90’s I started (a good decade for starts) a daily quotation server project at The domain is now defunct—some pages are partially viewable at the Way Back Machine.

Below is the list of quotes I had collected by the end of the life of the project. Most are about love—duh—and a few are jolly jests from funny trenches. You know, that place where mustard gas makes your eyes water.

The quotes weren’t scraped from quote archives—each is meaningful and hand-picked.

the quote archive

And now for full list of 1,600 other things worth reading. Such as everything Dorothy Parker has written and ... yes, even the Pinky and Brain quotes, which are a special kind of special.

Quote collections about love, heart, desire, life, death, god, mind, science.

Feeling lucky? Read 10 random quotes. Well, will you, punk?

Quotes about science

Science is a cemetery of dead ideas.
M. de Unamuno
As soon as questions of will or decision or reason or choice of action arise, human science is at a loss.
Noam Chomsky
The great tragedy of Science—the slaying of a
beautiful hypothesis by an ugly fact.
T.H. Huxley
Biogenesis and Abiogenesis
Even if there is only one possible unified theory, it is just a set of rules and equations. What is it that breathes fire into the equations and makes a universe for them to describe? The usual approach of science of constructing a mathematical model cannot answer the questions of why there should be a universe for the model to describe. Why does the universe go to all the bother of existing?
Stephen Hawking
A Brief History of Time
Science can purify religion from error and superstition. Religion can purify science from idolatry and false absolutes.
Pope John Paul II
In science one tries to tell people, in such a way as to be understood by everyone, something that no one ever knew before. But in poetry, it’s the exact opposite.
Paul Dirac
Mathematical Circles Adieu by H. Eves [quoted]
Every attempt to employ mathematical methods in the study of chemical questions must be considered profoundly irrational and contrary to the spirit of chemistry... if mathematical analysis should ever hold a prominent place in chemistry — an aberration which is happily almost impossible — it would occasion a rapid and widespread degeneration of that science.
Auguste Comte
Cours de Philosophie Positive (1830)
Biology is the only science in which multiplication means the same thing as division.
Science has proof without any certainty. Creationists have certainty without any proof.
Ashley Montague
This isn’t a rare scene in science or technology. This is the commonest scene of all. Just plain stuck. In traditional maintenance this is the worst of all moments, so bad that you have avoided even thinking about it before you come to it.
Robert M. Pirsig
Zen and the Art of Motorcycle Maintenance
Art is Science in Love.
E.F. Weisslitz
A poet is, after all, a sort of scientist, but engaged in a qualitative science in which nothing is measurable. He lives with data that cannot be numbered, and his experiments can be done only once. The information in a poem is, by definition, not reproducible. He becomes an equivalent of scientist, in the act of examining and sorting the things popping in [to his head], finding the marks of remote similarity, points of distant relationship, tiny irregularities that indicate that this one is really the same as that one over there only more important. Gauging the fit, he can meticulously place pieces of the universe together, in geometric configurations that are as beautiful and balanced as crystals.
Lewis Thomas
The Medusa and the Snail: More Notes of a Biology Watcher
How often people speak of art and science as though they were two entirely different things, with no interconnection. An artist is emotional, they think, and uses only his intuition; he sees all at once and has no need of reason. A scientist is cold, they think, and uses only his reason; he argues carefully step by step, and needs no imagination. That is all wrong. The true artist is quite rational as well as imaginative and knows what he is doing; if he does not, his art suffers. The true scientist is quite imaginative as well as rational, and sometimes leaps to solutions where reason can follow only slowly; if he does not, his science suffers.
Isaac Asimov
The Roving Mind (Ch 25)

news + thoughts

Scientific data visualization: Aesthetic for diagrammatic clarity

Mon 13-01-2020

The scientific process works because all its output is empirically constrained.

My chapter from The Aesthetics of Scientific Data Representation, More than Pretty Pictures, in which I discuss the principles of data visualization and connect them to the concept of "quality" introduced by Robert Pirsig in Zen and the Art of Motorcycle Maintenance.

Yearning for the Infinite — Aleph 2

Mon 18-11-2019

Discover Cantor's transfinite numbers through my music video for the Aleph 2 track of Max Cooper's Yearning for the Infinite (album page, event page).

Martin Krzywinski @MKrzywinski
Yearning for the Infinite, Max Cooper at the Barbican Hall, London. Track Aleph 2. Video by Martin Krzywinski. Photo by Michal Augustini. (more)

I discuss the math behind the video and the system I built to create the video.

Hidden Markov Models

Mon 18-11-2019

Everything we see hides another thing, we always want to see what is hidden by what we see.
—Rene Magritte

A Hidden Markov Model extends a Markov chain to have hidden states. Hidden states are used to model aspects of the system that cannot be directly observed and themselves form a Markov chain and each state may emit one or more observed values.

Hidden states in HMMs do not have to have meaning—they can be used to account for measurement errors, compress multi-modal observational data, or to detect unobservable events.

Martin Krzywinski @MKrzywinski
Nature Methods Points of Significance column: Hidden Markov Models. (read)

In this column, we extend the cell growth model from our Markov Chain column to include two hidden states: normal and sedentary.

We show how to calculate forward probabilities that can predict the most likely path through the HMM given an observed sequence.

Grewal, J., Krzywinski, M. & Altman, N. (2019) Points of significance: Hidden Markov Models. Nature Methods 16:795–796.

Background reading

Altman, N. & Krzywinski, M. (2019) Points of significance: Markov Chains. Nature Methods 16:663–664.

Hola Mundo Cover

Sat 21-09-2019

My cover design for Hola Mundo by Hannah Fry. Published by Blackie Books.

Martin Krzywinski @MKrzywinski
Hola Mundo by Hannah Fry. Cover design is based on my 2013 `\pi` day art. (read)

Curious how the design was created? Read the full details.

Markov Chains

Tue 30-07-2019

You can look back there to explain things,
but the explanation disappears.
You'll never find it there.
Things are not explained by the past.
They're explained by what happens now.
—Alan Watts

A Markov chain is a probabilistic model that is used to model how a system changes over time as a series of transitions between states. Each transition is assigned a probability that defines the chance of the system changing from one state to another.

Martin Krzywinski @MKrzywinski
Nature Methods Points of Significance column: Markov Chains. (read)

Together with the states, these transitions probabilities define a stochastic model with the Markov property: transition probabilities only depend on the current state—the future is independent of the past if the present is known.

Once the transition probabilities are defined in matrix form, it is easy to predict the distribution of future states of the system. We cover concepts of aperiodicity, irreducibility, limiting and stationary distributions and absorption.

This column is the first part of a series and pairs particularly well with Alan Watts and Blond:ish.

Grewal, J., Krzywinski, M. & Altman, N. (2019) Points of significance: Markov Chains. Nature Methods 16:663–664.