latest news

Distractions and amusements, with a sandwich and coffee.

Love itself became the object of her love.
•
• count sadnesses
• more quotes

In the late 90’s I started (a good decade for starts) a daily quotation server project at *www.quoteserver.ca*. The domain is now defunct—some pages are partially viewable at the Way Back Machine.

Below is the list of quotes I had collected by the end of the life of the project. Most are about love—duh—and a few are jolly jests from funny trenches. You know, that place where mustard gas makes your eyes water.

The quotes weren’t scraped from quote archives—each is meaningful and hand-picked.

And now for full list of 1,600 other things worth reading. Such as everything Dorothy Parker has written and ... yes, even the Pinky and Brain quotes, which are a special kind of special.

Quote collections about love, heart, desire, life, death, god, mind, science.

Feeling lucky? Read 10 random quotes. Well, will you, punk?

280

Science is a cemetery of dead ideas.

735

As soon as questions of will or decision or reason or choice of action arise, human science is at a loss.

870

The great tragedy of Science—the slaying of a

beautiful hypothesis by an ugly fact.

beautiful hypothesis by an ugly fact.

Biogenesis and Abiogenesis

1466

Even if there is only one possible unified theory, it is just a set of rules and equations. What is it that breathes fire into the equations and makes a universe for them to describe? The usual approach of science of constructing a mathematical model cannot answer the questions of why there should be a universe for the model to describe. Why does the universe go to all the bother of existing?

A Brief History of Time

1467

Science can purify religion from error and superstition. Religion can purify science from idolatry and false absolutes.

1561

In science one tries to tell people, in such a way as to be understood by everyone, something that no one ever knew before. But in poetry, it’s the exact opposite.

Mathematical Circles Adieu by H. Eves [quoted]

1607

Every attempt to employ mathematical methods in the study of chemical questions must be considered profoundly irrational and contrary to the spirit of chemistry... if mathematical analysis should ever hold a prominent place in chemistry — an aberration which is happily almost impossible — it would occasion a rapid and widespread degeneration of that science.

Cours de Philosophie Positive (1830)

1609

Biology is the only science in which multiplication means the same thing as division.

1610

Science has proof without any certainty. Creationists have certainty without any proof.

1625

This isn’t a rare scene in science or technology. This is the commonest scene of all. Just plain stuck. In traditional maintenance this is the worst of all moments, so bad that you have avoided even thinking about it before you come to it.

Zen and the Art of Motorcycle Maintenance

1630

Art is Science in Love.

1662

A poet is, after all, a sort of scientist, but engaged in a qualitative science in which nothing is measurable. He lives with data that cannot be numbered, and his experiments can be done only once. The information in a poem is, by definition, not reproducible. He becomes an equivalent of scientist, in the act of examining and sorting the things popping in [to his head], finding the marks of remote similarity, points of distant relationship, tiny irregularities that indicate that this one is really the same as that one over there only more important. Gauging the fit, he can meticulously place pieces of the universe together, in geometric configurations that are as beautiful and balanced as crystals.

The Medusa and the Snail: More Notes of a Biology Watcher

1665

How often people speak of art and science as though they were two entirely different things, with no interconnection. An artist is emotional, they think, and uses only his intuition; he sees all at once and has no need of reason. A scientist is cold, they think, and uses only his reason; he argues carefully step by step, and needs no imagination. That is all wrong. The true artist is quite rational as well as imaginative and knows what he is doing; if he does not, his art suffers. The true scientist is quite imaginative as well as rational, and sometimes leaps to solutions where reason can follow only slowly; if he does not, his science suffers.

The Roving Mind (Ch 25)

We introduce two common ensemble methods: bagging and random forests. Both of these methods repeat a statistical analysis on a bootstrap sample to improve the accuracy of the predictor. Our column shows these methods as applied to Classification and Regression Trees.

For example, we can sample the space of values more finely when using bagging with regression trees because each sample has potentially different boundaries at which the tree splits.

Random forests generate a large number of trees by not only generating bootstrap samples but also randomly choosing which predictor variables are considered at each split in the tree.

Krzywinski, M. & Altman, N. (2017) Points of Significance: Ensemble methods: bagging and random forests. *Nature Methods* **14**:933–934.

Krzywinski, M. & Altman, N. (2017) Points of Significance: Classification and regression trees. *Nature Methods* **14**:757–758.

Decision trees classify data by splitting it along the predictor axes into partitions with homogeneous values of the dependent variable. Unlike logistic or linear regression, CART does not develop a prediction equation. Instead, data are predicted by a series of binary decisions based on the boundaries of the splits. Decision trees are very effective and the resulting rules are readily interpreted.

Trees can be built using different metrics that measure how well the splits divide up the data classes: Gini index, entropy or misclassification error.

When the predictor variable is quantitative and not categorical, regression trees are used. Here, the data are still split but now the predictor variable is estimated by the average within the split boundaries. Tree growth can be controlled using the complexity parameter, a measure of the relative improvement of each new split.

Individual trees can be very sensitive to minor changes in the data and even better prediction can be achieved by exploiting this variability. Using ensemble methods, we can grow multiple trees from the same data.

Krzywinski, M. & Altman, N. (2017) Points of Significance: Classification and regression trees. *Nature Methods* **14**:757–758.

Lever, J., Krzywinski, M. & Altman, N. (2016) Points of Significance: Logistic regression. *Nature Methods* **13**:541-542.

Altman, N. & Krzywinski, M. (2015) Points of Significance: Multiple Linear Regression *Nature Methods* **12**:1103-1104.

Lever, J., Krzywinski, M. & Altman, N. (2016) Points of Significance: Classifier evaluation. *Nature Methods* **13**:603-604.

Lever, J., Krzywinski, M. & Altman, N. (2016) Points of Significance: Model Selection and Overfitting. *Nature Methods* **13**:703-704.

Lever, J., Krzywinski, M. & Altman, N. (2016) Points of Significance: Regularization. *Nature Methods* **13**:803-804.

The artwork was created in collaboration with my colleagues at the Genome Sciences Center to celebrate the 5 year anniversary of the Personalized Oncogenomics Program (POG).

The Personal Oncogenomics Program (POG) is a collaborative research study including many BC Cancer Agency oncologists, pathologists and other clinicians along with Canada's Michael Smith Genome Sciences Centre with support from BC Cancer Foundation.

The aim of the program is to sequence, analyze and compare the genome of each patient's cancer—the entire DNA and RNA inside tumor cells— in order to understand what is enabling it to identify less toxic and more effective treatment options.

Principal component analysis (PCA) simplifies the complexity in high-dimensional data by reducing its number of dimensions.

To retain trend and patterns in the reduced representation, PCA finds linear combinations of canonical dimensions that maximize the variance of the projection of the data.

PCA is helpful in visualizing high-dimensional data and scatter plots based on 2-dimensional PCA can reveal clusters.

Altman, N. & Krzywinski, M. (2017) Points of Significance: Principal component analysis. *Nature Methods* **14**:641–642.

Altman, N. & Krzywinski, M. (2017) Points of Significance: Clustering. *Nature Methods* **14**:545–546.

Similar to the `h` index in publishing, the `k` index is a measure of fitness performance.

To achieve a `k` index for a movement you must perform `k` unbroken reps at `k`% 1RM.

The expected value for the `k` index is probably somewhere in the range of `k = 26` to `k=35`, with higher values progressively more difficult to achieve.

In my `k` index introduction article I provide detailed explanation, rep scheme table and WOD example.