Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - contact me Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca on Twitter Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - Lumondo Photography Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - Pi Art Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - Hilbertonians - Creatures on the Hilbert Curve
In your hiding, you're alone. Kept your treasures with my bones.Coeur de Piratecrawl somewhere bettermore quotes

quotes: fun


EMBO Practical Course: Bioinformatics and Genome Analysis, 5–17 June 2017.


art + literature

daily quotation server archives

In the late 90’s I started (a good decade for starts) a daily quotation server project at www.quoteserver.ca. The domain is now defunct—some pages are partially viewable at the Way Back Machine.

Below is the list of quotes I had collected by the end of the life of the project. Most are about love—duh—and a few are jolly jests from funny trenches. You know, that place where mustard gas makes your eyes water.

The quotes weren’t scraped from quote archives—each is meaningful and hand-picked.

the quote archive

And now for full list of 1,600 other things worth reading. Such as everything Dorothy Parker has written and ... yes, even the Pinky and Brain quotes, which are a special kind of special.

Quote collections about love, heart, desire, life, death, god, mind, science.

Feeling lucky? Read 10 random quotes. Well, will you, punk?

Quotes about science

280
Science is a cemetery of dead ideas.
M. de Unamuno
735
As soon as questions of will or decision or reason or choice of action arise, human science is at a loss.
Noam Chomsky
870
The great tragedy of Science—the slaying of a
beautiful hypothesis by an ugly fact.
T.H. Huxley
Biogenesis and Abiogenesis
1466
Even if there is only one possible unified theory, it is just a set of rules and equations. What is it that breathes fire into the equations and makes a universe for them to describe? The usual approach of science of constructing a mathematical model cannot answer the questions of why there should be a universe for the model to describe. Why does the universe go to all the bother of existing?
Stephen Hawking
A Brief History of Time
1467
Science can purify religion from error and superstition. Religion can purify science from idolatry and false absolutes.
Pope John Paul II
1561
In science one tries to tell people, in such a way as to be understood by everyone, something that no one ever knew before. But in poetry, it’s the exact opposite.
Paul Dirac
Mathematical Circles Adieu by H. Eves [quoted]
1607
Every attempt to employ mathematical methods in the study of chemical questions must be considered profoundly irrational and contrary to the spirit of chemistry... if mathematical analysis should ever hold a prominent place in chemistry — an aberration which is happily almost impossible — it would occasion a rapid and widespread degeneration of that science.
Auguste Comte
Cours de Philosophie Positive (1830)
1609
Biology is the only science in which multiplication means the same thing as division.
1610
Science has proof without any certainty. Creationists have certainty without any proof.
Ashley Montague
1625
This isn’t a rare scene in science or technology. This is the commonest scene of all. Just plain stuck. In traditional maintenance this is the worst of all moments, so bad that you have avoided even thinking about it before you come to it.
Robert M. Pirsig
Zen and the Art of Motorcycle Maintenance
1630
Art is Science in Love.
E.F. Weisslitz
1662
A poet is, after all, a sort of scientist, but engaged in a qualitative science in which nothing is measurable. He lives with data that cannot be numbered, and his experiments can be done only once. The information in a poem is, by definition, not reproducible. He becomes an equivalent of scientist, in the act of examining and sorting the things popping in [to his head], finding the marks of remote similarity, points of distant relationship, tiny irregularities that indicate that this one is really the same as that one over there only more important. Gauging the fit, he can meticulously place pieces of the universe together, in geometric configurations that are as beautiful and balanced as crystals.
Lewis Thomas
The Medusa and the Snail: More Notes of a Biology Watcher
1665
How often people speak of art and science as though they were two entirely different things, with no interconnection. An artist is emotional, they think, and uses only his intuition; he sees all at once and has no need of reason. A scientist is cold, they think, and uses only his reason; he argues carefully step by step, and needs no imagination. That is all wrong. The true artist is quite rational as well as imaginative and knows what he is doing; if he does not, his art suffers. The true scientist is quite imaginative as well as rational, and sometimes leaps to solutions where reason can follow only slowly; if he does not, his science suffers.
Isaac Asimov
The Roving Mind (Ch 25)
VIEW ALL

news + thoughts

Machine learning: a primer

Tue 05-12-2017
Machine learning extracts patterns from data without explicit instructions.

In this primer, we focus on essential ML principles— a modeling strategy to let the data speak for themselves, to the extent possible.

The benefits of ML arise from its use of a large number of tuning parameters or weights, which control the algorithm’s complexity and are estimated from the data using numerical optimization. Often ML algorithms are motivated by heuristics such as models of interacting neurons or natural evolution—even if the underlying mechanism of the biological system being studied is substantially different. The utility of ML algorithms is typically assessed empirically by how well extracted patterns generalize to new observations.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Nature Methods Points of Significance column: Machine learning: a primer. (read)

We present a data scenario in which we fit to a model with 5 predictors using polynomials and show what to expect from ML when noise and sample size vary. We also demonstrate the consequences of excluding an important predictor or including a spurious one.

Bzdok, D., Krzywinski, M. & Altman, N. (2017) Points of Significance: Machine learning: a primer. Nature Methods 14:1119–1120.",

...more about the Points of Significance column

Snowflake simulation

Tue 14-11-2017
Symmetric, beautiful and unique.

Just in time for the season, I've simulated a snow-pile of snowflakes based on the Gravner-Griffeath model.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
A few of the beautiful snowflakes generated by the Gravner-Griffeath model. (explore)

Gravner, J. & Griffeath, D. (2007) Modeling Snow Crystal Growth II: A mesoscopic lattice map with plausible dynamics.

Genes that make us sick

Thu 02-11-2017
Where disease hides in the genome.

My illustration of the location of genes in the human genome that are implicated in disease appears in The Objects that Power the Global Economy, a book by Quartz.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
The location of genes implicated in disease in the human genome, shown here as a spiral. (more...)

Ensemble methods: Bagging and random forests

Mon 16-10-2017
Many heads are better than one.

We introduce two common ensemble methods: bagging and random forests. Both of these methods repeat a statistical analysis on a bootstrap sample to improve the accuracy of the predictor. Our column shows these methods as applied to Classification and Regression Trees.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Nature Methods Points of Significance column: Ensemble methods: Bagging and random forests. (read)

For example, we can sample the space of values more finely when using bagging with regression trees because each sample has potentially different boundaries at which the tree splits.

Random forests generate a large number of trees by not only generating bootstrap samples but also randomly choosing which predictor variables are considered at each split in the tree.

Krzywinski, M. & Altman, N. (2017) Points of Significance: Ensemble methods: bagging and random forests. Nature Methods 14:933–934.

Background reading

Krzywinski, M. & Altman, N. (2017) Points of Significance: Classification and regression trees. Nature Methods 14:757–758.

...more about the Points of Significance column

Classification and regression trees

Mon 16-10-2017
Decision trees are a powerful but simple prediction method.

Decision trees classify data by splitting it along the predictor axes into partitions with homogeneous values of the dependent variable. Unlike logistic or linear regression, CART does not develop a prediction equation. Instead, data are predicted by a series of binary decisions based on the boundaries of the splits. Decision trees are very effective and the resulting rules are readily interpreted.

Trees can be built using different metrics that measure how well the splits divide up the data classes: Gini index, entropy or misclassification error.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Nature Methods Points of Significance column: Classification and decision trees. (read)

When the predictor variable is quantitative and not categorical, regression trees are used. Here, the data are still split but now the predictor variable is estimated by the average within the split boundaries. Tree growth can be controlled using the complexity parameter, a measure of the relative improvement of each new split.

Individual trees can be very sensitive to minor changes in the data and even better prediction can be achieved by exploiting this variability. Using ensemble methods, we can grow multiple trees from the same data.

Krzywinski, M. & Altman, N. (2017) Points of Significance: Classification and regression trees. Nature Methods 14:757–758.

Background reading

Lever, J., Krzywinski, M. & Altman, N. (2016) Points of Significance: Logistic regression. Nature Methods 13:541-542.

Altman, N. & Krzywinski, M. (2015) Points of Significance: Multiple Linear Regression Nature Methods 12:1103-1104.

Lever, J., Krzywinski, M. & Altman, N. (2016) Points of Significance: Classifier evaluation. Nature Methods 13:603-604.

Lever, J., Krzywinski, M. & Altman, N. (2016) Points of Significance: Model Selection and Overfitting. Nature Methods 13:703-704.

Lever, J., Krzywinski, M. & Altman, N. (2016) Points of Significance: Regularization. Nature Methods 13:803-804.

...more about the Points of Significance column