view updates

Distractions and amusements, with a sandwich and coffee.

Lips that taste of tears, they say, are the best for kissing.
•
• get cranky
• more quotes

Some of the images in this writeup are part of Ana Swanson's Wonk Blot post How a dog sees a rainbow, and 12 other images that explain how we see color at the Washington Post.

In an audience of 8 men and 8 women, chances are 50% that at least one has some degree of color blindness^{1,2}. When encoding information or designing content, use colors that is color-blind safe.

^{1}About 8% of males and 0.5% of females are affected with some kind of color blindness in populations of European descent (wikipedia, Worldwide prevalence of red-green color deficiency, JOSAA). The rate for other races is lower Asians and Africans is lower (Caucasian Boys Show Highest Prevalence of Color Blindness Among Preschoolers, AAO).

^{2}The probability that among `N=8` men and `N=8` women at least one person is affected by color blindness is `P(men,women) = P(8,8) = 1 - (1-0.08)^8 * (1-0.005)^8 = 0.51`. For `N=34` (i.e., 68 people in total), this probability is `P(34,34)=0.95`. Because the rate of color blindness in women is so low, for most groups of mixed gender we can approximate the probability by only counting the men. For example, in a group of 17 women the probability that at least one of them is color blind is `P(0,17) = 0.082`, which is the same probability as for 1 man, `P(1,0)`.

Color Oracle is a good and free color blindness simulator for Windows, Mac and Linux.

You can download the RGB transformation table for deuteranopia, protanopia and tritanopia. It is available for all (r,g,b) colors in steps of 5 in each of the channels. The mapping for all other RGB colors can be interpolated.

Transformation for *all* 16.8 million RGB colors (interpolated from the table above) are also available independently for each type of color blindness:
deuteranopia,
protanopia,
and
tritanopia.

The normal human eye is a 3-channel color detector^{3}. There are three types of photoreceptors, each sensitive to a different part of the spectrum. Their combined response to a given wavelength produces a unique response that is the basis of the perception of color.

^{3}Compared to hearing, the color vision is a primitive detector. While we can hear thousands of distinct frequencies and process them simultaneously, we have only three independent color inputs. While the ear can distinguish pure tones from complex sounds that have multiple frequencies the eye is relatively unsophisticated in separating a color sensation into its three constituent primary stimuli.

People with color blindness have one of the photo receptor groups either reduced in number or entirely missing. With only two groups of photoreceptors, the perception of hue is drastically altered.

For example, in *deuteranopia*, the most common type of color blindness, the medium (M) wavelength photoreceptors are reduced in number or missing. This results in the loss of perceived difference between reds and greens because only one group of photoreceptors (L) are sensitive to the wavelengths of these colors. The spectrum appears to be split into two hues along the blue-green boundary (see figure below).

Visible light is in the range of 390-700 nm. The exact definition of the upper limit varies, with some sources giving as high as 760 nm. Shorter wavelengths are absorbed by the cornea (<295nm) and lens (315-390nm). Some near infrared light also reaches the retina (760-1400nm).

The opposite condition to color blindness exists too—tetrachromacy. In this case, an individual has an extra type of color receptor which improves discrimination in the red part of the spectrum. While the anatomy of their retina can be described, how true tetrachromats subjectively perceive color is unknown. And, perhaps, even unknowable.

Tetrachromacy is common in other animals, such as fish (e.g. goldfish, zebrafish) and birds (e.g. finch, starling). The dimensionality of the perceived color space isn't necessarily proportional to the number of different receptors. If the signal from 3 color receptors are combined by the brain and each processor has a weighted response to a broad range of wavelengths, then a color can be modeled by a point in 3-dimensional space, in which the receptors are the axes. This system can perceive a large number of colors.

In the extreme case where the receptors respond to a very narrow range, of which none overlap with the other, a color is one of three points in a 1-dimensional space. This sytem can perceive only 3 colors.

For example, although the mantis shrimp has 12 different color receptors, the receptors work independently, their color discrimination is poorer than ours.

If you use Color Oracle to transform your screen colors to simulate color blindness, you can see that none of the equivalent swatches in one kind of color blindness are equivalent in another. This is particularly interesting when applied to a duotone image which is drawn using equivalent colors. In the figure below^{4}, a row of Mr. Spocks disappears (or is difficult to see) to people with color blindness.

^{4}In tribute to Leonard Nimoy, 1931–2015

To people with color blindness, some colors appear the same. This equivalence can be used to identify distinct colors which are unique to those with normal and color blind vision.

The seven colors (and black) in the figure below are perceived as reasonably distinct by both normal and color blind individuals. The table on the left is reproduced from Nature Method's Points of View: Color blindness by Bang Wong.

For more tips about designing with color blindness in mind, see Color Universal Design (CUD) — How to make figures and presentations that are friendly to Colorblind people.

The figure below shows the mapping of different colors to six different grades of each of the two hues seen by deuteranopes. It offers more distinct options than the 7-color palette above.

Even more color choices for color blindess, including colors that map onto greys.

If you're looking to encode quantitative information, I suggest using the subset of Brewer palettes that are safe for color blindess (e.g. pink-yellow-green, brown-blue-green).

Genomic instability is one of the defining characteristics of cancer and within a tumor, which is an ever-evolving population of cells, there are many genomes. Mutations accumulate and propagate to create subpopulations and these groups of cells, called clones, may respond differently to treatment.

It is now possible to sequence individual cells within a tumor to create a profile of genomes. This profile changes with time, both in the kinds of mutation that are found and in their proportion in the overall population.

Clone evolution diagrams visualize these data. These diagrams can be qualitative, showing only trends, or quantitative, showing temporal and population changes to scale. In this Molecular Cell forum article I provide guidelines for drawing these diagrams, focusing with how to use color and navigational elements, such as grids, to clarify the relationships between clones.

I'd like to thank Maia Smith and Cydney Nielsen for assistance in preparing some of the figures in the paper.

Krzywinski, M. (2016) Visualizing Clonal Evolution in Cancer. Mol Cell 62:652-656.

*Limitations in print resolution and visual acuity impose limits on data density and detail.*

Your printer can print at 1,200 or 2,400 dots per inch. At reading distance, your reader can resolve about 200–300 lines per inch. This large gap—how finely we can print and how well we can see—can create problems when we don't take visual acuity into account.

The column provides some guidelines—particularly relevant when showing whole-genome data, where the scale of elements of interest such as genes is below the visual acuity limit—for binning data so that they are represented by elements that can be comfortably discerned.

Krzywinski, M. (2016) Points of view: Binning high-resolution data. Nature Methods 13:463.

*Residual plots can be used to validate assumptions about the regression model.*

Continuing with our series on regression, we look at how you can identify issues in your regression model.

The difference between the observed value and the model's predicted value is the residual, `r = y_i - \hat{y}_i`, a very useful quantity to identify the effects of outliers and trends in the data that might suggest your model is inadequate.

We also discuss normal probability plots (or Q-Q plots) and show how these can be used to check that the residuals are normally distributed, which is one of the assumptions of regression (constant variance being another).

Altman, N. & Krzywinski, M. (2016) Points of Significance: Analyzing outliers: Influential or nuisance? *Nature Methods* **13**:281-282.

Altman, N. & Krzywinski, M. (2015) Points of Significance: Multiple Linear Regression *Nature Methods* **12**:1103-1104.

Altman, N. & Krzywinski, M. (2015) Points of significance: Simple Linear Regression *Nature Methods* **12**:999-1000.

*Some outliers influence the regression fit more than others.*

This month our column addresses the effect that outliers have on linear regression.

You may be surprised, but not all outliers have the same influence on the fit (e.g. regression slope) or inference (e.g. confidence or prediction intervals). Outliers with large leverage—points that are far from the sample average—can have a very large effect. On the other hand, if the outlier is close to the sample average, it may not influence the regression slope at all.

Quantities such as Cook's distance and the so-called hat matrix, which defines leverage, are useful in assessing the effect of outliers.

Altman, N. & Krzywinski, M. (2015) Points of Significance: Multiple Linear Regression *Nature Methods* **12**:1103-1104.

Altman, N. & Krzywinski, M. (2015) Points of significance: Simple Linear Regression *Nature Methods* **12**:999-1000.