Distractions and amusements, with a sandwich and coffee.
Here, I help you understand color blindness and describe a process by which you can make good color choices when designing for accessibility.
The opposite of colorblindness is seeing all the colors and I can help you find 1,000 (or more) maximally distinct colors.
You can also delve into the mathematics behind the color blindness simulations and learn about copunctal points (the invisible color!) and lines of confusion.
Palettes designed for deuteranopia color blindness.
Color Blindness Simulator: Built-in ColorSchemes to the test by George Varnavides.
Viénot, Brettel & Mollon (1999) Digital Video Colourmaps for Checking the Legibility of Displays by Dichromats Color Research and Application 24:243–252.
Brettel, Viénot & Mollon (1997) Computerized simulation of color appearance for dichromats. Journal of the Optical Society of America A14:2647&ndash2655.
Color blindness simulation research by Jim Schmitz.
ColorBlindness Processing library by Jim Schmitz.
How a dog sees a rainbow, and 12 other images that explain how we see color by Ana Swanson.
CC library swatches by Jessica Brassard (3 Feb 2019).
My cover design on the 11 April 2022 Cancer Cell issue depicts depicts cellular heterogeneity as a kaleidoscope generated from immunofluorescence staining of the glial and neuronal markers MBP and NeuN (respectively) in a GBM patient-derived explant.
LeBlanc VG et al. Single-cell landscapes of primary glioblastomas and matched explants and cell lines show variable retention of inter- and intratumor heterogeneity (2022) Cancer Cell 40:379–392.E9.
Browse my gallery of cover designs.
My cover design on the 4 April 2022 Nature Biotechnology issue is an impression of a phylogenetic tree of over 200 million sequences.
Konno N et al. Deep distributed computing to reconstruct extremely large lineage trees (2022) Nature Biotechnology 40:566–575.
Browse my gallery of cover designs.
My cover design on the 17 March 2022 Nature issue depicts the evolutionary properties of sequences at the extremes of the evolvability spectrum.
Vaishnav ED et al. The evolution, evolvability and engineering of gene regulatory DNA (2022) Nature 603:455–463.
Browse my gallery of cover designs.
Celebrate `\pi` Day (March 14th) and finally hear what you've been missing.
“three one four: a number of notes” is a musical exploration of how we think about mathematics and how we feel about mathematics. It tells stories from the very beginning (314…) to the very (known) end of π (...264) as well as math (Wallis Product) and math jokes (Feynman Point), repetition (nn) and zeroes (null).
The album is scored for solo piano in the style of 20th century classical music – each piece has a distinct personality, drawn from styles of Boulez, Feldman, Glass, Ligeti, Monk, and Satie.
Each piece is accompanied by a piku (or πku), a poem whose syllable count is determined by a specific sequence of digits from π.
Check out art from previous years: 2013 `\pi` Day and 2014 `\pi` Day, 2015 `\pi` Day, 2016 `\pi` Day, 2017 `\pi` Day, 2018 `\pi` Day, 2019 `\pi` Day, 2020 `\pi` Day and 2021 `\pi` Day.
My design appears on the 25 January 2022 PNAS issue.
The cover shows a view of Earth that captures the vision of the Earth BioGenome Project — understanding and conserving genetic diversity on a global scale. Continents from the Authagraph projection, which preserves areas and shapes, are represented as a double helix of 32,111 bases. Short sequences of 806 unique species, sequenced as part of EBP-affiliated projects, are mapped onto the double helix of the continent (or ocean) where the species is commonly found. The length of the sequence is the same for each species on a continent (or ocean) and the sequences are separated by short gaps. Individual bases of the sequence are colored by dots. Species appear along the path in alphabetical order (by Latin name) and the first base of the first species is identified by a small black triangle.
Lewin HA et al. The Earth BioGenome Project 2020: Starting the clock. (2022) PNAS 119(4) e2115635118.