Martin Krzywinski / Canada's Michael Smith Genome Sciences Centre / mkweb.bcgsc.ca Martin Krzywinski / Canada's Michael Smith Genome Sciences Centre / mkweb.bcgsc.ca - contact me Martin Krzywinski / Canada's Michael Smith Genome Sciences Centre / mkweb.bcgsc.ca on Twitter Martin Krzywinski / Canada's Michael Smith Genome Sciences Centre / mkweb.bcgsc.ca - Lumondo Photography Martin Krzywinski / Canada's Michael Smith Genome Sciences Centre / mkweb.bcgsc.ca - Pi Art Martin Krzywinski / Canada's Michael Smith Genome Sciences Centre / mkweb.bcgsc.ca - Hilbertonians - Creatures on the Hilbert CurveMartin Krzywinski / Canada's Michael Smith Genome Sciences Centre / mkweb.bcgsc.ca - Pi Day 2020 - Piku
In your hiding, you're alone. Kept your treasures with my bones.Coeur de Piratecrawl somewhere bettermore quotes

blue: color


PNAS Cover: Earth BioGenome Project


visualization + design
If you are interested in color, explore my other color tools, Brewer palettes resources, color blindness palettes and math and an exhausting list of 10,000 color names for all those times you couldn't distinguish between tan hide, sea buckthorn, orange peel, west side, sunshade, california and pizzaz.

Designing for Color Blindess

Color choices and transformations for deuteranopia and other afflictions

Here, I help you understand color blindness and describe a process by which you can make good color choices when designing for accessibility.

The opposite of colorblindness is seeing all the colors and I can help you find 1,000 (or more) maximally distinct colors.

You can also delve into the mathematics behind the color blindness simulations and learn about copunctal points (the invisible color!) and lines of confusion.

Color palettes for color blindness

Palettes designed for deuteranopia color blindness.

8-color

12-color

15-color

24-color

All resources in PDF format.

Mathematics of color transformation

Color Blindness Simulator: Built-in ColorSchemes to the test by George Varnavides.

Viénot, Brettel & Mollon (1999) Digital Video Colourmaps for Checking the Legibility of Displays by Dichromats Color Research and Application 24:243–252.

Brettel, Viénot & Mollon (1997) Computerized simulation of color appearance for dichromats. Journal of the Optical Society of America A14:2647&ndash2655.

Color blindness simulation research by Jim Schmitz.

Software

Color Oracle

ColorBlindness Processing library by Jim Schmitz.

notions and miscellanea

How a dog sees a rainbow, and 12 other images that explain how we see color by Ana Swanson.

CC library swatches by Jessica Brassard (3 Feb 2019).

VIEW ALL

news + thoughts

Cancer Cell cover

Sat 23-04-2022

My cover design on the 11 April 2022 Cancer Cell issue depicts depicts cellular heterogeneity as a kaleidoscope generated from immunofluorescence staining of the glial and neuronal markers MBP and NeuN (respectively) in a GBM patient-derived explant.

LeBlanc VG et al. Single-cell landscapes of primary glioblastomas and matched explants and cell lines show variable retention of inter- and intratumor heterogeneity (2022) Cancer Cell 40:379–392.E9.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
My Cancer Cell kaleidoscope cover (volume 40, issue 4, 11 April 2022). (more)

Browse my gallery of cover designs.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
A catalogue of my journal and magazine cover designs. (more)

Nature Biotechnology cover

Sat 23-04-2022

My cover design on the 4 April 2022 Nature Biotechnology issue is an impression of a phylogenetic tree of over 200 million sequences.

Konno N et al. Deep distributed computing to reconstruct extremely large lineage trees (2022) Nature Biotechnology 40:566–575.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
My Nature Biotechnology phylogenetic tree cover (volume 40, issue 4, 4 April 2022). (more)

Browse my gallery of cover designs.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
A catalogue of my journal and magazine cover designs. (more)

Nature cover — Gene Genie

Sat 23-04-2022

My cover design on the 17 March 2022 Nature issue depicts the evolutionary properties of sequences at the extremes of the evolvability spectrum.

Vaishnav ED et al. The evolution, evolvability and engineering of gene regulatory DNA (2022) Nature 603:455–463.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
My Nature squiggles cover (volume 603, issue 7901, 17 March 2022). (more)

Browse my gallery of cover designs.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
A catalogue of my journal and magazine cover designs. (more)

Happy 2022 `\pi` Day—
three one four: a number of notes

Mon 14-03-2022

Celebrate `\pi` Day (March 14th) and finally hear what you've been missing.

“three one four: a number of notes” is a musical exploration of how we think about mathematics and how we feel about mathematics. It tells stories from the very beginning (314…) to the very (known) end of π (...264) as well as math (Wallis Product) and math jokes (Feynman Point), repetition (nn) and zeroes (null).

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Listen to `\pi` in the style of 20th century classical music. (details)

The album is scored for solo piano in the style of 20th century classical music – each piece has a distinct personality, drawn from styles of Boulez, Feldman, Glass, Ligeti, Monk, and Satie.

Each piece is accompanied by a piku (or πku), a poem whose syllable count is determined by a specific sequence of digits from π.

Check out art from previous years: 2013 `\pi` Day and 2014 `\pi` Day, 2015 `\pi` Day, 2016 `\pi` Day, 2017 `\pi` Day, 2018 `\pi` Day, 2019 `\pi` Day, 2020 `\pi` Day and 2021 `\pi` Day.

PNAS Cover — Earth BioGenome Project

Fri 28-01-2022

My design appears on the 25 January 2022 PNAS issue.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
My PNAS cover design captures the vision of the Earth BioGenome Project — to sequence everything. (more)

The cover shows a view of Earth that captures the vision of the Earth BioGenome Project — understanding and conserving genetic diversity on a global scale. Continents from the Authagraph projection, which preserves areas and shapes, are represented as a double helix of 32,111 bases. Short sequences of 806 unique species, sequenced as part of EBP-affiliated projects, are mapped onto the double helix of the continent (or ocean) where the species is commonly found. The length of the sequence is the same for each species on a continent (or ocean) and the sequences are separated by short gaps. Individual bases of the sequence are colored by dots. Species appear along the path in alphabetical order (by Latin name) and the first base of the first species is identified by a small black triangle.

Lewin HA et al. The Earth BioGenome Project 2020: Starting the clock. (2022) PNAS 119(4) e2115635118.