Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - contact me Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca on Twitter Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - Lumondo Photography Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - Pi Art Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - Hilbertonians - Creatures on the Hilbert Curve
And she looks like the moon. So close and yet, so far.Future Islandsaim highmore quotes


In Silico Flurries: Computing a world of snow. Scientific American. 23 December 2017


visualization + design

Scientific American Graphic Science - Martin Krzywinski. / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca

Working with senior graphics editor at Scientific American Jen Christiansen, I have designed three Graphic Science visualizations for the magazine.

Scientific American Graphic Science - Martin Krzywinski. / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
July 2018. Mental illness overlap.
Scientific American Graphic Science - Martin Krzywinski. / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
December 2015. Composition of bacteria in household dust.
Scientific American Graphic Science - Martin Krzywinski. / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
June 2015. Relationship between genes and traits.
Scientific American Graphic Science - Martin Krzywinski. / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
September 2014. Similarity of human, Denisovan, chimp, bonobo, and gorilla genomes.

The Same Genes May Underlie Different Psychiatric Disorders

A distinct set of genes may underlie several psychiatric conditions

July 2018, Scientific American Volume 319, Issue 1

The dataset is challenging: expression, correlation and network module membership of 11,000+ genes. Getting it onto one page was an exercise in restraint and calm.

Graphic by Martin Krzywinski.

Source: Gandal M.J. et al. Shared Molecular Neuropathology Across Major Psychiatric Disorders Parallels Polygenic Overlap Science 359 693–697 (2018)

Men and Women Alter a Home's Bacteria Differently

An analysis of dust reveals how the presence of men, women, dogs and cats affects the variety of bacteria in a household

December 2015, Scientific American Volume 313, Issue 6

This collaboration with Jeanine Hunnicutt explored differences in household dust bacteria based on the gender and pet status of the occupants.

We have also written about the making of the graphic, for those interested in how these things come together.

Graphic by Martin Krzywinski and Barbara Jeanine Hunnicutt.

Catalogue of bacteria shapes by Barbara Jeanine Hunnicutt.

Source: Barberan A et al. (2015) The ecology of microscopic life in household dust. Proc. R. Soc. B 282: 20151139.

Scientific American Graphic Science - Martin Krzywinski. / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca

A Road Map to the "Volume Control" of Genes

Genes, traits and disease are linked in complex and surprising ways

June 2015, Scientific American Volume 312, Issue 6

Because sometimes only a network hairball will do.

Graphic by Martin Krzywinski.

Source: Integrative analysis of 111 reference human epigenomes. (2015) Nature 518:317.

Scientific American Graphic Science - Martin Krzywinski. / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca

Tiny Genetic Differences between Humans and Other Primates Pervade the Genome

Genome comparisons reveal the DNA that distinguishes Homo sapiens from its kin

September 2014, Scientific American Volume 311, Issue 3

A Scientific American blog entry "A Monkey's Blueprint" accompanies this piece. I also have a more detailed description with links to data sources.

You can also read more about Hilbert curves and creatures that live on it, Hilbertonians.

This design won a bronze award at Malofiej 23. For more information about Malofiej, see the SA Visual blog entry "There's No Infographic without Info (and other Lessons from Malofiej)".

Graphic by Martin Krzywinski, illustrations by Portia Sloan Rollings.

Scientific American Graphic Science - Martin Krzywinski. / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
VIEW ALL

news + thoughts

Optimal experimental design

Tue 31-07-2018
Customize the experiment for the setting instead of adjusting the setting to fit a classical design.

The presence of constraints in experiments, such as sample size restrictions, awkward blocking or disallowed treatment combinations may make using classical designs very difficult or impossible.

Optimal design is a powerful, general purpose alternative for high quality, statistically grounded designs under nonstandard conditions.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Nature Methods Points of Significance column: Optimal experimental design. (read)

We discuss two types of optimal designs (D-optimal and I-optimal) and show how it can be applied to a scenario with sample size and blocking constraints.

Smucker, B., Krzywinski, M. & Altman, N. (2018) Points of significance: Optimal experimental design Nature Methods 15:599–600.

Background reading

Krzywinski, M., Altman, N. (2014) Points of significance: Two factor designs. Nature Methods 11:1187–1188.

Krzywinski, M. & Altman, N. (2014) Points of significance: Analysis of variance (ANOVA) and blocking. Nature Methods 11:699–700.

Krzywinski, M. & Altman, N. (2014) Points of significance: Designing comparative experiments. Nature Methods 11:597–598.

The Whole Earth Cataloguer

Mon 30-07-2018
All the living things.

An illustration of the Tree of Life, showing some of the key branches.

The tree is drawn as a DNA double helix, with bases colored to encode ribosomal RNA genes from various organisms on the tree.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
The circle of life. (read, zoom)

All living things on earth descended from a single organism called LUCA (last universal common ancestor) and inherited LUCA’s genetic code for basic biological functions, such as translating DNA and creating proteins. Constant genetic mutations shuffled and altered this inheritance and added new genetic material—a process that created the diversity of life we see today. The “tree of life” organizes all organisms based on the extent of shuffling and alteration between them. The full tree has millions of branches and every living organism has its own place at one of the leaves in the tree. The simplified tree shown here depicts all three kingdoms of life: bacteria, archaebacteria and eukaryota. For some organisms a grey bar shows when they first appeared in the tree in millions of years (Ma). The double helix winding around the tree encodes highly conserved ribosomal RNA genes from various organisms.

Johnson, H.L. (2018) The Whole Earth Cataloguer, Sactown, Jun/Jul, p. 89

Why we can't give up this odd way of typing

Mon 30-07-2018
All fingers report to home row.

An article about keyboard layouts and the history and persistence of QWERTY.

My Carpalx keyboard optimization software is mentioned along with my World's Most Difficult Layout: TNWMLC. True typing hell.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
TNWMLC requires seriously flexible digits. It’s 87% more difficult than using a standard Qwerty keyboard, according to Martin Krzywinski, who created it (Credit: Ben Nelms). (read)

McDonald, T. (2018) Why we can't give up this odd way of typing, BBC, 25 May 2018.

Molecular Case Studies Cover

Fri 06-07-2018

The theme of the April issue of Molecular Case Studies is precision oncogenomics. We have three papers in the issue based on work done in our Personalized Oncogenomics Program (POG).

The covers of Molecular Case Studies typically show microscopy images, with some shown in a more abstract fashion. There's also the occasional Circos plot.

I've previously taken a more fine-art approach to cover design, such for those of Nature, Genome Research and Trends in Genetics. I've used microscopy images to create a cover for PNAS—the one that made biology look like astrophysics—and thought that this is kind of material I'd start with for the MCS cover.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Cover design for Apr 2018 issue of Molecular Case Studies. (details)