Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - contact me Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca on Twitter Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - Lumondo Photography Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - Pi Art Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - Hilbertonians - Creatures on the Hilbert Curve
In your hiding, you're alone. Kept your treasures with my bones.Coeur de Piratecrawl somewhere bettermore quotes


In Silico Flurries: Computing a world of snow. Scientific American. 23 December 2017


visualization + design

Scientific American Graphic Science - Martin Krzywinski. / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca

Working with senior graphics editor at Scientific American Jen Christiansen, I have designed three Graphic Science visualizations for the magazine.

Scientific American Graphic Science - Martin Krzywinski. / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
July 2018. Mental illness overlap.
Scientific American Graphic Science - Martin Krzywinski. / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
December 2015. Composition of bacteria in household dust.
Scientific American Graphic Science - Martin Krzywinski. / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
June 2015. Relationship between genes and traits.
Scientific American Graphic Science - Martin Krzywinski. / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
September 2014. Similarity of human, Denisovan, chimp, bonobo, and gorilla genomes.

The Same Genes May Underlie Different Psychiatric Disorders

A distinct set of genes may underlie several psychiatric conditions

July 2018, Scientific American Volume 319, Issue 1

The dataset is challenging: expression, correlation and network module membership of 11,000+ genes. Getting it onto one page was an exercise in restraint and calm.

Graphic by Martin Krzywinski.

Source: Gandal M.J. et al. Shared Molecular Neuropathology Across Major Psychiatric Disorders Parallels Polygenic Overlap Science 359 693–697 (2018)

Men and Women Alter a Home's Bacteria Differently

An analysis of dust reveals how the presence of men, women, dogs and cats affects the variety of bacteria in a household

December 2015, Scientific American Volume 313, Issue 6

This collaboration with Jeanine Hunnicutt explored differences in household dust bacteria based on the gender and pet status of the occupants.

We have also written about the making of the graphic, for those interested in how these things come together.

Graphic by Martin Krzywinski and Barbara Jeanine Hunnicutt.

Catalogue of bacteria shapes by Barbara Jeanine Hunnicutt.

Source: Barberan A et al. (2015) The ecology of microscopic life in household dust. Proc. R. Soc. B 282: 20151139.

Scientific American Graphic Science - Martin Krzywinski. / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca

A Road Map to the "Volume Control" of Genes

Genes, traits and disease are linked in complex and surprising ways

June 2015, Scientific American Volume 312, Issue 6

Because sometimes only a network hairball will do.

Graphic by Martin Krzywinski.

Source: Integrative analysis of 111 reference human epigenomes. (2015) Nature 518:317.

Scientific American Graphic Science - Martin Krzywinski. / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca

Tiny Genetic Differences between Humans and Other Primates Pervade the Genome

Genome comparisons reveal the DNA that distinguishes Homo sapiens from its kin

September 2014, Scientific American Volume 311, Issue 3

A Scientific American blog entry "A Monkey's Blueprint" accompanies this piece. I also have a more detailed description with links to data sources.

You can also read more about Hilbert curves and creatures that live on it, Hilbertonians.

This design won a bronze award at Malofiej 23. For more information about Malofiej, see the SA Visual blog entry "There's No Infographic without Info (and other Lessons from Malofiej)".

Graphic by Martin Krzywinski, illustrations by Portia Sloan Rollings.

Scientific American Graphic Science - Martin Krzywinski. / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
VIEW ALL

news + thoughts

Predicting with confidence and tolerance

Wed 07-11-2018
I abhor averages. I like the individual case. —J.D. Brandeis.

We focus on the important distinction between confidence intervals, typically used to express uncertainty of a sampling statistic such as the mean and, prediction and tolerance intervals, used to make statements about the next value to be drawn from the population.

Confidence intervals provide coverage of a single point—the population mean—with the assurance that the probability of non-coverage is some acceptable value (e.g. 0.05). On the other hand, prediction and tolerance intervals both give information about typical values from the population and the percentage of the population expected to be in the interval. For example, a tolerance interval can be configured to tell us what fraction of sampled values (e.g. 95%) will fall into an interval some fraction of the time (e.g. 95%).

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Nature Methods Points of Significance column: Predicting with confidence and tolerance. (read)

Altman, N. & Krzywinski, M. (2018) Points of significance: Predicting with confidence and tolerance Nature Methods 15:843–844.

Background reading

Krzywinski, M. & Altman, N. (2013) Points of significance: Importance of being uncertain. Nature Methods 10:809–810.

4-day Circos course

Wed 31-10-2018

A 4-day introductory course on genome data parsing and visualization using Circos. Prepared for the Bioinformatics and Genome Analysis course in Institut Pasteur Tunis, Tunis, Tunisia.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Composite of the kinds of images you will learn to make in this course.

Oryza longistaminata genome cake

Mon 24-09-2018

Data visualization should be informative and, where possible, tasty.

Stefan Reuscher from Bioscience and Biotechnology Center at Nagoya University celebrates a publication with a Circos cake.

The cake shows an overview of a de-novo assembled genome of a wild rice species Oryza longistaminata.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Circos cake celebrating Reuscher et al. 2018 publication of the Oryza longistaminata genome.

Optimal experimental design

Tue 31-07-2018
Customize the experiment for the setting instead of adjusting the setting to fit a classical design.

The presence of constraints in experiments, such as sample size restrictions, awkward blocking or disallowed treatment combinations may make using classical designs very difficult or impossible.

Optimal design is a powerful, general purpose alternative for high quality, statistically grounded designs under nonstandard conditions.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Nature Methods Points of Significance column: Optimal experimental design. (read)

We discuss two types of optimal designs (D-optimal and I-optimal) and show how it can be applied to a scenario with sample size and blocking constraints.

Smucker, B., Krzywinski, M. & Altman, N. (2018) Points of significance: Optimal experimental design Nature Methods 15:599–600.

Background reading

Krzywinski, M., Altman, N. (2014) Points of significance: Two factor designs. Nature Methods 11:1187–1188.

Krzywinski, M. & Altman, N. (2014) Points of significance: Analysis of variance (ANOVA) and blocking. Nature Methods 11:699–700.

Krzywinski, M. & Altman, N. (2014) Points of significance: Designing comparative experiments. Nature Methods 11:597–598.