latest newsbuy art
Without an after or a when.Papercut feat. Maiken Sundbycan you hear the rain?more quotes
very clickable

visualization + design

Like paths? Got your lines twisted in a bunch?
Take a look at my 2014 Pi Day art that folds Pi.

Hilbert Curve Art, Hilbertonians and Monkeys

I collaborated with Scientific American to create a data graphic for the September 2014 issue. The graphic compared the genomes of the Denisovan, bonobo, chimp and gorilla, showing how our own genomes are almost identical to the Denisovan and closer to that of the bonobo and chimp than the gorilla.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca

Here you'll find Hilbert curve art, a introduction to Hilbertonians, the creatures that live on the curve, an explanation of the Scientific American graphic and downloadable SVG/EPS Hilbert curve files.

The graphic won a Bronze medal at Malofiej 23. Art direction by Jen Christiansen. Text by Kate Wong. Spot illustrations by Portia Sloan Rollings.
Scientific American Hilbert Curve genome graphic of human, denisovan, chimp, bonobo and gorilla genomes by Martin Krzywinski. / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Scientific American | Tiny genetic differences between humans and other primates pervade the genome. Art direction by Jen Christiansen. Text by Kate Wong. Spot illustrations by Portia Sloan Rollings.

monkey genomes

This page accompanies my blog post at Scientific American, which itself accompanies the figure in the magazine.

In the blog post I argue that the genome is not a blueprint—a common metaphor that doesn't leave room for appreciating the complexity of the genome—and talk about the process of creating the figure.

the graphic

brief

The graphic shows the differences between the genome sequence of human and each of Denisovan, chimp, bonobo and gorilla. Differences are measured by the fraction of bases in the gene regions of human sequence that do not align to the other genome.

The approximately 1 Gb of sequence of gene regions (most introns are included) is divided into 2,047 bins which are mapped onto the Hilbert curve as circles.

The color of the circle, which represents about 500 kb of sequence, encodes the fraction of unaligned bases.

The original color scheme submitted for production was derived from the yellow-orange-red Brewer palette.

measuring differences

There's more than one way to do it.

The approach taken by the graphic is one of the simplest—this is why it was chosen. It's easy to understand and easy to explain. On the other hand, the answer depends on the state of the sequence resources for each species (especially bonobo, whose sequence assembly is in version 1) and completely overlooks the functional implications of these differences.

The real goal of identifying differences, a relatively superficial problem, is to find the subset of differences that make a difference, which is a deep problem.

Spitting images are identical within spitting error.

For example, if someone told you that Vancouver, Canada and Sydney, Australia were 85% similar, you would likely assume that (a) this metric isn't that useful to you unless it aligns to your priorities in how city similarities should be judged, (b) other metrics would give different answers, and (c) some parts of Sydney are nothing like Vancouver while others might be identical. This goes the same for genomes, except that cities are easier to figure out since we built them ourselves.

The differences will be scattered throughout the genome and will take many forms: single base changes, small insertions or deletions, inversions, copy number changes, and so on. In parts critical to basic cell function we expect no differences (e.g. insulin gene exons) while in genes that are rapidly evolving we expect to see some differences.

A comparison of protein coding genes reveals approximately 500 genes showing accelerated evolution on each of the gorilla, human and chimpanzee lineages, and evidence for parallel acceleration, particularly of genes involved in hearing.
Insights into hominid evolution from the gorilla genome sequence by Scally et al.

Parts of the genome that don't impact function are going to accumulate differences at a background rate of mutation.

uncertainty in life sciences

Any single-number statistic that compares two genomes is necessarily going to be a gross approximation. Such numerical measures should be taken as a starting point and at best as some kind of average that hides all of the texture in the data.

Statements like "the 1% difference" are incomplete because they do not incorporate an uncertainty. If you see four separate reports claiming a 1%, 2%, 5% and 7% difference, this does not necessarily mean that we cannot agree. It means that the error in our measurement is large. You might venture a guess that the answer is somewhere in the range 1–7% (at the very least).

While confidence intervals and error bars are a sine qua non in physical sciences, assessing uncertainty in life sciences is a lot more difficult. To assess the extent of biological variation, which will add to the uncertainty in our result, we need to collecting data from independent biological samples. Often this is too expensive or not practical.

To provide a sober and practical guide to statistics for the busy biologist, Naomi Altman and myself write the Points of Significance column in Nature Methods. These kinds of resources are needed as long as errors persist in the translation between statistical analysis and conclusions (e.g. `5 sigma` and P values).

Two compatible estimates can easily and wrongly be interpreted as incompatible facts.

We don't yet have a full handle on individual levels of genomic variation, especially for non-human primates for which we have a single and incomplete genome. Even for humans, although we have resources like dbSNP, which catalogue individual variation, it is common to use the canonical human reference sequence for analysis. This reference sequence is only a single instance of a human genome (in fact, parts of it are derived from different individuals).

As a result, many of the reported values (and certainly almost all that make it to popular media) are without any confidence limits and thus are likely to be interpreted as fact rather than as an estimate. This causes all sorts of problems—two compatible estimates can easily (but wrongly) be interpreted as incompatible facts.

As an example, look at the phylogenetic trees in the figure below. Without incorporating uncertainty, the top tree presents a fixed and deceptive state of what we know about the uncertainty in what we know.

Phylogenetic tree / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Without incorporating uncertainty into results and data graphics we cannot tell how precise our observations and calculations are. (zoom)

Recent work has shed some light on the uncertainty in determining population split times. The two trees in the figure above are generated from the data in the table below, from Langergraber KE, Prufer K, Rowney C et al. 2012 Generation times in wild chimpanzees and gorillas suggest earlier divergence times in great ape and human evolution Proc Natl Acad Sci U S A 109 (39) 15716-15721.

Phylogenetic tree / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Original and recalibrated population split times from several recent studies. (zoom)

Notice that the human/chimp/gorilla split time uncertainty overlaps the human/chimp split.

The addition of uncertainty is the inevitable consequence of making multiple measurements and upgraded analytical models. It is a blessing not a curse.

when we measure, we estimate

That our genome is "similar" to that of the chimp, bonobo and gorilla is not in dispute. How to classify and quantify the differences is an active field of research, a process that often looks like a dispute.

We do science so that our minds are changed.

We have been sequencing quickly and cheaply for less than 10 years. It's amazing how much we've been able to understand in such a short period of time. Genome sequencing (or some kind of genotyping) is now routinely done in the treatment of cancer. It is not long before a medical diagnosis will include an assessment of the full genome sequence.

As we sequence more and reflect more, we expect to change our minds. In fact, this is why we do science: so that our minds are changed.

Scientists engage the public in the process of scientific inquiry, testing and observation by way of reports in popular science media and newspapers. Understanding these reports requires that one holds as a core value to process of science and its outcomes. Groups with different agendas and a fundamentally different epistemology hijaack observations such as "In 30% of the genome, gorilla is closer to human or chimpanzee than the latter are to each other." (from the gorilla sequence paper) in an attempt to argue that our evolutionary models are sinfully wrong. They don't understand the implications of the uncertainty in our measurements (e.g. phylogenetic tree figure above) and have world outlooks that are impervious to the impact of observation.

It is certain that these genomes hold more surprises for us, but not in the way these groups claim.

Is our science incomplete? Absolutely. How do we address this? We do more science.

genome is not a blueprint

The genome is not blueprint. It's also absolutely not a recipe, which is promulgated by people who agree that it is not a blueprint. I explain my view of this here and why I think these analogies have disasterous effects on the public understanding of how their genomes (i.e. their bodies) work.

Sometimes metaphors are wonderful and they help expand our mind.

I, a universe of atoms, an atom in the universe.
—Richard Feynman

Other times they are like jailors, keeping us from having productive thoughts.

Genomics: the big blueprint
nature.com

You might argue that "blueprint" is one of the closest words in meaning, so its use is justified. The trouble is that its actually very far in meaning.

Consider the following figure.

Genome is not a blueprint / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
The genome is not a blueprint and you should never say that it is. You shouldn't even say that it's like one, because it's nothing like one.

A blueprint shows you "what". A genome doesn’t encode "what". It doesn’t even encode “how”. Nor does it encode "from what". It encodes "with what", which is several degrees removed from "what". I promise that this will make sense shortly.

The reason why the blueprint analogy is pernicious is that it makes it sound like once the genome sequence is known, the rest easily follows. The reality is that these days the genome sequence is easily determined and the rest follows with great effort (or never) (see The $1,000 genome, the $100,000 analysis? by Elaine Mardis).

I'm going to try to motivate you that the analogy is false by an example. Suppose that you wanted to build a house but instead of getting blueprints from the architect, you received this strange drawing.

Genome is not a blueprint. / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
If your home had a genome, it might look like this. (zoom)

You’d be right to be confused—welcome to genome science. This house’s genome looks a lot like a set of tools and bears no resemblance to the house itself. The genome tells you nothing about (a) what the function of each tool is, (b) the effect of the tools form to its function (e.g. what are the many ways in which a hammer can diverge from its original shape before it ceases to be useful), (c) what the tools act on (this is why above I said "with what" rather than "from what"), (d) how the tools act together, and importantly (e) what the tools are used to build.

This is more of a way a genome works. It encodes the protein enzymes that make biochemical reactions possible at room temperature. In the house example, the tools encoded by the genome (e.g. saw, hammer) can be thought of automatically doing their job when they’re in the presence of the correct material (wood, nail). This is in analogy to enzymes, which mediate reactions when in physical proximity of chemical substrates.

The genome is not a code of life. It is a code of tools.

Neither wood nor nails—both essential materials for construction—appear anywhere in your home's genome. This directly translates into a biochemical example. We use sugar as a source of energy but the genome hints nothing at this—it only encodes the enzymes that act on sugar. Things are made more complex by the fact that the function of an enzyme is essentially impossible to predict without additional information, such as knowledge of functions of enzymes with similar characteristics.

You can probably imagine that the effect of changes in the home's genome is extraordinary difficult to predict. The figure below extends our example to that of your neighbour, which was recently observed to have collapsed. I’ll leave you to work out the mystery yourself.

Genome is not a blueprint. / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Why exactly did your neighbour's home fall down? You suspect the root cause lies in its genome.

So next time someone says that the genome is a blueprint, or that it is the "code of life", point out that it is merely the "code of tools" for life, which is the emerging property of a set of chemicals confined within a physical space.

hilbert curve in genomics

The use of the Hilbert curve in genomics is not new. It appeared on the cover of Science in 2009 in connection to the 3-dimensional packing of the genome. It is an order 5 curve and just a flip of the curve I use in the Scientific American graphic. Here the corners of the curve have been smoothed out to give it a more organic and gooey feel.

Hilbert curve on cover of Science. / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
(left) Hilbert curve on cover of Science (Oct 2009) (right) Portion of Figure 2 from accompanying article Comprehensive Mapping of Long-Range Interactions Reveals Folding Principles of the Human Genome.

At least one tool exists (HilbertVis) that allows you to wrap genomic data onto the curve.

Anders S 2009 Visualization of genomic data with the Hilbert curve Bioinformatics 25 (10) 1231-1235.

I've used the Hilbert curve before to show the organization of genes in the genome. This figure shows the chromosome at a much higher resolution than would be possible if an ordinary line was used.

Chromosome 1 gene position and size on a Hilbert curve. / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
The size and position of genes on human chromosome 1. Genes implicated in cancer and generally in disease are highlighted. (zoom)

Because the Hilbert curve stretches the line into a square, it increases our ability to see details in data at higher resolution. In the figure below you can see distinct clumpiness in the organization of genes on the chromsome that is not representative of a purely random sampling.

Chromosome 1 gene position and size on a Hilbert curve. / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Gene distribution is not random. This can be effectively demonstrated at high resolution using a Hilbert curve. (zoom)

data sources

Except for the Denisovan, the net alignments (e.g. human vs chimp net) from UCSC Genome browser were used for the analysis.

Gaps were intersected with human gene regions. For each gene, the region between the start of the first coding region and end of the last coding region was used.

human (Homo sapiens sapiens)

The RefSeq gene annotation from the UCSC Genome table browser was used. The union of all 51,010 RefSeq gene records was used.

The gene region was taken as the extent of the gene's coding sequence (CDS), not just the exons within it.

For example, for the BRCA2 gene, the RefSeq entry is

                        tx                cds               
BRCA2 NM_000059 chr13 + 32889616-32973809 32890597-32972907 

                        exons exonstart            exonend
                        27    32889616,32890558... 32889804,32890664... 

This record's contribution was the region 32890597-32972907, shown in bold above.

The total size of the union of tx regions is 1.28 Gb (20,722 coverage elements), of cds regions as defined above is 0.99 Gb (24,931 coverage elements) and of exons is 74.5 Mb (225,404 coverage elements).

Assembly version: Feb 2009 (CRCh37/hg19)

International Human Genome Sequencing Consortium 2004 Finishing the euchromatic sequence of the human genome Nature 431 (7011) 931-945.

Denisovan

30x sequence was aligned to the human genome at Max Planck (data portal).

Meyer M, Kircher M, Gansauge MT et al. 2012 A high-coverage genome sequence from an archaic Denisovan individual Science 338 (6104) 222-226.

chimp (Pan troglodytes)

Assembly version: Feb 2011 (panTro4)

Chimpanzee Sequencing and Analysis Consortium 2005 Initial sequence of the chimpanzee genome and comparison with the human genome Nature 437 (7055) 69-87.

bonobo (Pan paniscus)

Assembly version: May 2012 (panPan1).

Prufer K, Munch K, Hellmann I et al. 2012 The bonobo genome compared with the chimpanzee and human genomes Nature 486 (7404) 527-531.

At the moment this genome is available only on the test version of the browser.

Assembly version: Feb 2009 (CRCh37/hg19)

gorilla (Gorilla gorilla gorilla)

Assembly version: May 2011 (gorGor3.1/gorGor3)

Scally A, Dutheil JY, Hillier LW et al. 2012 Insights into hominid evolution from the gorilla genome sequence Nature 483 (7388) 169-175.
news + thoughts

Annals of Oncology cover

Wed 14-09-2022

My cover design on the 1 September 2022 Annals of Oncology issue shows 570 individual cases of difficult-to-treat cancers. Each case shows the number and type of actionable genomic alterations that were detected and the length of therapies that resulted from the analysis.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
An organic arrangement of 570 individual cases of difficult-to-treat cancers showing genomic changes and therapies. Apperas on Annals of Oncology cover (volume 33, issue 9, 1 September 2022).

Pleasance E et al. Whole-genome and transcriptome analysis enhances precision cancer treatment options (2022) Annals of Oncology 33:939–949.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
My Annals of Oncology 570 cancer cohort cover (volume 33, issue 9, 1 September 2022). (more)

Browse my gallery of cover designs.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
A catalogue of my journal and magazine cover designs. (more)

Survival analysis—time-to-event data and censoring

Fri 05-08-2022

Love's the only engine of survival. —L. Cohen

We begin a series on survival analysis in the context of its two key complications: skew (which calls for the use of probability distributions, such as the Weibull, that can accomodate skew) and censoring (required because we almost always fail to observe the event in question for all subjects).

We discuss right, left and interval censoring and how mishandling censoring can lead to bias and loss of sensitivity in tests that probe for differences in survival times.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Nature Methods Points of Significance column: Survival analysis—time-to-event data and censoring. (read)

Dey, T., Lipsitz, S.R., Cooper, Z., Trinh, Q., Krzywinski, M & Altman, N. (2022) Points of significance: Survival analysis—time-to-event data and censoring. Nature Methods 19:906–908.

3,117,275,501 Bases, 0 Gaps

Sun 21-08-2022

See How Scientists Put Together the Complete Human Genome.

My graphic in Scientific American's Graphic Science section in the August 2022 issue shows the full history of the human genome assembly — from its humble shotgun beginnings to the gapless telomere-to-telomere assembly.

Read about the process and methods behind the creation of the graphic.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
3,117,275,501 Bases, 0 Gaps. Text by Clara Moskowitz (Senior Editor), art direction by Jen Christiansen (Senior Graphics Editor), source: UCSC Genome Browser.

See all my Scientific American Graphic Science visualizations.

Anatomy of SARS-Cov-2

Tue 31-05-2022

My poster showing the genome structure and position of mutations on all SARS-CoV-2 variants appears in the March/April 2022 issue of American Scientist.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Deadly Genomes: Genome Structure and Size of Harmful Bacteria and Viruses (zoom)

An accompanying piece breaks down the anatomy of each genome — by gene and ORF, oriented to emphasize relative differences that are caused by mutations.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Deadly Genomes: Genome Structure and Size of Harmful Bacteria and Viruses (zoom)

Cancer Cell cover

Sat 23-04-2022

My cover design on the 11 April 2022 Cancer Cell issue depicts depicts cellular heterogeneity as a kaleidoscope generated from immunofluorescence staining of the glial and neuronal markers MBP and NeuN (respectively) in a GBM patient-derived explant.

LeBlanc VG et al. Single-cell landscapes of primary glioblastomas and matched explants and cell lines show variable retention of inter- and intratumor heterogeneity (2022) Cancer Cell 40:379–392.E9.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
My Cancer Cell kaleidoscope cover (volume 40, issue 4, 11 April 2022). (more)

Browse my gallery of cover designs.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
A catalogue of my journal and magazine cover designs. (more)

Nature Biotechnology cover

Sat 23-04-2022

My cover design on the 4 April 2022 Nature Biotechnology issue is an impression of a phylogenetic tree of over 200 million sequences.

Konno N et al. Deep distributed computing to reconstruct extremely large lineage trees (2022) Nature Biotechnology 40:566–575.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
My Nature Biotechnology phylogenetic tree cover (volume 40, issue 4, 4 April 2022). (more)

Browse my gallery of cover designs.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
A catalogue of my journal and magazine cover designs. (more)

Nature cover — Gene Genie

Sat 23-04-2022

My cover design on the 17 March 2022 Nature issue depicts the evolutionary properties of sequences at the extremes of the evolvability spectrum.

Vaishnav ED et al. The evolution, evolvability and engineering of gene regulatory DNA (2022) Nature 603:455–463.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
My Nature squiggles cover (volume 603, issue 7901, 17 March 2022). (more)

Browse my gallery of cover designs.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
A catalogue of my journal and magazine cover designs. (more)

Happy 2022 `\pi` Day—
three one four: a number of notes

Mon 14-03-2022

Celebrate `\pi` Day (March 14th) and finally hear what you've been missing.

“three one four: a number of notes” is a musical exploration of how we think about mathematics and how we feel about mathematics. It tells stories from the very beginning (314…) to the very (known) end of π (...264) as well as math (Wallis Product) and math jokes (Feynman Point), repetition (nn) and zeroes (null).

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Listen to `\pi` in the style of 20th century classical music. (details)

The album is scored for solo piano in the style of 20th century classical music – each piece has a distinct personality, drawn from styles of Boulez, Feldman, Glass, Ligeti, Monk, and Satie.

Each piece is accompanied by a piku (or πku), a poem whose syllable count is determined by a specific sequence of digits from π.

Check out art from previous years: 2013 `\pi` Day and 2014 `\pi` Day, 2015 `\pi` Day, 2016 `\pi` Day, 2017 `\pi` Day, 2018 `\pi` Day, 2019 `\pi` Day, 2020 `\pi` Day and 2021 `\pi` Day.

PNAS Cover — Earth BioGenome Project

Fri 28-01-2022

My design appears on the 25 January 2022 PNAS issue.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
My PNAS cover design captures the vision of the Earth BioGenome Project — to sequence everything. (more)

The cover shows a view of Earth that captures the vision of the Earth BioGenome Project — understanding and conserving genetic diversity on a global scale. Continents from the Authagraph projection, which preserves areas and shapes, are represented as a double helix of 32,111 bases. Short sequences of 806 unique species, sequenced as part of EBP-affiliated projects, are mapped onto the double helix of the continent (or ocean) where the species is commonly found. The length of the sequence is the same for each species on a continent (or ocean) and the sequences are separated by short gaps. Individual bases of the sequence are colored by dots. Species appear along the path in alphabetical order (by Latin name) and the first base of the first species is identified by a small black triangle.

Lewin HA et al. The Earth BioGenome Project 2020: Starting the clock. (2022) PNAS 119(4) e2115635118.

The COVID charts — hospitalization rates

Tue 25-01-2022

As part of the COVID Charts series, I fix a muddled and storyless graphic tweeted by Adrian Dix, Canada's Health Minister.

I show you how to fix color schemes to make them colorblind-accessible and effective in revealing patters, how to reduce redundancy in labels (a key but overlooked part of many visualizations) and how to extract a story out of a table to frame the narrative.

Browse all the COVID charts.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Clear titles introduce the graphic, which starts with informative and non-obvious observations of the relationship between age, number of comorbidities, vaccination status and hospitalization rates. Supporting the story is a tidy table that gives you detailed statistics for each demographic. (more)

© 1999–2022 Martin Krzywinski | contact | Canada's Michael Smith Genome Sciences CentreBC Cancer Research CenterBC CancerPHSA