latest news

Distractions and amusements, with a sandwich and coffee.

This love loves love. It's a strange love, strange love.
•
• find a way to love
• more quotes

I collaborated with Scientific American to create a data graphic for the September 2014 issue. The graphic compared the genomes of the Denisovan, bonobo, chimp and gorilla, showing how our own genomes are almost identical to the Denisovan and closer to that of the bonobo and chimp than the gorilla.

Here you'll find Hilbert curve art, a introduction to Hilbertonians, the creatures that live on the curve, an explanation of the Scientific American graphic and downloadable SVG/EPS Hilbert curve files.

There are wheels within wheels in this village and fires within fires!

— Arthur Miller (The Crucible)

The Hilbert curve is one of many space-filling curves. It is a mapping between one dimension (e.g. a line) and multiple dimensions (e.g. a square, a cube, etc). It's useful because it preserves locality—points that are nearby on the line are usually mapped onto nearby points on the curve.

The Hilbert curve is a line that gives itself a hug.

It's a pretty strange mapping, to be sure. Although a point on a line maps uniquely onto the curve this is not the case in reverse. At infinite order the curve intersects itself infinitely many times! This shouldn't be a surprise if you consider that the unit square has the same number of points as the unit line. Now that's the real surprise! So surprising in fact that it apparently destabilized Cantor's mind, who made the initial discovery.

Bryan Hayes has a great introduction (Crinkly Curves) to the Hilbert curve at American Scientist.

If manipulated so that its ends are adjacent, the Hilbert curve becomes the Moore curve.

The order 1 curve is generated by dividing a square into quadrants and connecting the centers of the quadrants with three lines. Which three connections are made is arbitrary—different choices result in rotations of the curve.

The order 6 curve is the highest order whose structure can be discerned at this figure resolution. Though just barely. The length of this curve is about 64 times the width of the square, so about 9,216 pixels! That's tight packing.

By order 7 the structure in the 620 pixel wide image (each square is 144 px wide) cannot be discerned. By order 8 the curve has 65,536 points, which exceeds the number of pixels its square in the figure. A square of 256 x 256 would be required to show all the points without downsampling.

Two order 10 curves have 1,048,576 points each and would approximately map onto all the pixels on an average monitor (1920 x 1200 pixels).

A curve of order 33 has `7.38 * 10^19` points and if drawn as a square of average body height would have points that are an atom's distance from one another (`10^{-10}` m).

By mapping the familiar rainbow onto the curve you can see how higher order curves "crinkle" (to borrow Bryan's term) around the square.

order | points | segments | length |

`n` | `4^n` | `4^{n-1}` | `2^n-2^{-n}` |

1 | 4 | 3 | 1.5 |

2 | 16 | 15 | 3.75 |

3 | 64 | 63 | 7.875 |

4 | 256 | 255 | 15.9375 |

5 | 1,024 | 1,023 | 31.96875 |

6 | 4,096 | 4,095 | 63.984375 |

7 | 16,384 | 16,383 | 127.9921875 |

8 | 65,536 | 65,535 | 255.99609375 |

9 | 262,144 | 262,143 | 511.998046875 |

10 | 1,048,576 | 1,048,575 | 1023.9990234375 |

11 | 4,194,304 | 4,194,303 | 2047.99951171875 |

12 | 16,777,216 | 16,777,215 | 4095.99975585938 |

13 | 67,108,864 | 67,108,863 | 8191.99987792969 |

14 | 268,435,456 | 268,435,455 | 16383.9999389648 |

15 | 1,073,741,824 | 1,073,741,823 | 32767.9999694824 |

16 | 4,294,967,296 | 4,294,967,295 | 65535.9999847412 |

17 | 17,179,869,184 | 17,179,869,183 | 131071.999992371 |

18 | 68,719,476,736 | 68,719,476,735 | 262143.999996185 |

19 | 274,877,906,944 | 274,877,906,943 | 524287.999998093 |

20 | 1,099,511,627,776 | 1,099,511,627,775 | 1048575.99999905 |

21 | 4,398,046,511,104 | 4,398,046,511,103 | 2097151.99999952 |

22 | 17,592,186,044,416 | 17,592,186,044,415 | 4194303.99999976 |

23 | 70,368,744,177,664 | 70,368,744,177,663 | 8388607.99999988 |

24 | 281,474,976,710,656 | 281,474,976,710,655 | 16777215.9999999 |

You can download the basic curve shapes for orders 1 to 10 and experiment yourself. Both square and circular forms are available.

The Sanctuary Project is a Lunar vault of science and art. It includes two fully sequenced human genomes, sequenced and assembled by us at Canada's Michael Smith Genome Sciences Centre.

The first disc includes a song composed by Flunk for the (eventual) trip to the Moon.

But how do you send sound to space? I describe the inspiration, process and art behind the work.

A forest of digits

Celebrate `\pi` Day (March 14th) and finally see the digits through the forest.

This year is full of botanical whimsy. A Lindenmayer system forest – deterministic but always changing. Feel free to stop and pick the flowers from the ground.

And things can get crazy in the forest.

Check out art from previous years: 2013 `\pi` Day and 2014 `\pi` Day, 2015 `\pi` Day, 2016 `\pi` Day, 2017 `\pi` Day, 2018 `\pi` Day and 2019 `\pi` Day.

*All that glitters is not gold. —W. Shakespeare*

The sensitivity and specificity of a test do not necessarily correspond to its error rate. This becomes critically important when testing for a rare condition — a test with 99% sensitivity and specificity has an even chance of being wrong when the condition prevalence is 1%.

We discuss the positive predictive value (PPV) and how practices such as screen can increase it.

Altman, N. & Krzywinski, M. (2021) Points of significance: Testing for rare conditions. *Nature Methods* **18**:224–225.

*We demand rigidly defined areas of doubt and uncertainty! —D. Adams*

A popular notion about experiments is that it's good to keep variability in subjects low to limit the influence of confounding factors. This is called standardization.

Unfortunately, although standardization increases power, it can induce unrealistically low variability and lead to results that do not generalize to the population of interest. And, in fact, may be irreproducible.

Not paying attention to these details and thinking (or hoping) that standardization is always good is the "standardization fallacy". In this column, we look at how standardization can be balanced with heterogenization to avoid this thorny issue.

Voelkl, B., Würbel, H., Krzywinski, M. & Altman, N. (2021) Points of significance: Standardization fallacy. *Nature Methods* **18**:5–6.

*Clear, concise, legible and compelling.*

Making a scientific graphical abstract? Refer to my practical design guidelines and redesign examples to improve organization, design and clarity of your graphical abstracts.

An in-depth look at my process of reacting to a bad figure — how I design a poster and tell data stories.