latest news

Distractions and amusements, with a sandwich and coffee.

I'm not real and I deny I won't heal unless I cry.
•
• let it go
• more quotes

I collaborated with Scientific American to create a data graphic for the September 2014 issue. The graphic compared the genomes of the Denisovan, bonobo, chimp and gorilla, showing how our own genomes are almost identical to the Denisovan and closer to that of the bonobo and chimp than the gorilla.

Here you'll find Hilbert curve art, a introduction to Hilbertonians, the creatures that live on the curve, an explanation of the Scientific American graphic and downloadable SVG/EPS Hilbert curve files.

There are wheels within wheels in this village and fires within fires!

— Arthur Miller (The Crucible)

The Hilbert curve is one of many space-filling curves. It is a mapping between one dimension (e.g. a line) and multiple dimensions (e.g. a square, a cube, etc). It's useful because it preserves locality—points that are nearby on the line are usually mapped onto nearby points on the curve.

The Hilbert curve is a line that gives itself a hug.

It's a pretty strange mapping, to be sure. Although a point on a line maps uniquely onto the curve this is not the case in reverse. At infinite order the curve intersects itself infinitely many times! This shouldn't be a surprise if you consider that the unit square has the same number of points as the unit line. Now that's the real surprise! So surprising in fact that it apparently destabilized Cantor's mind, who made the initial discovery.

Bryan Hayes has a great introduction (Crinkly Curves) to the Hilbert curve at American Scientist.

If manipulated so that its ends are adjacent, the Hilbert curve becomes the Moore curve.

The order 1 curve is generated by dividing a square into quadrants and connecting the centers of the quadrants with three lines. Which three connections are made is arbitrary—different choices result in rotations of the curve.

The order 6 curve is the highest order whose structure can be discerned at this figure resolution. Though just barely. The length of this curve is about 64 times the width of the square, so about 9,216 pixels! That's tight packing.

By order 7 the structure in the 620 pixel wide image (each square is 144 px wide) cannot be discerned. By order 8 the curve has 65,536 points, which exceeds the number of pixels its square in the figure. A square of 256 x 256 would be required to show all the points without downsampling.

Two order 10 curves have 1,048,576 points each and would approximately map onto all the pixels on an average monitor (1920 x 1200 pixels).

A curve of order 33 has `7.38 * 10^19` points and if drawn as a square of average body height would have points that are an atom's distance from one another (`10^{-10}` m).

By mapping the familiar rainbow onto the curve you can see how higher order curves "crinkle" (to borrow Bryan's term) around the square.

order | points | segments | length |

`n` | `4^n` | `4^{n-1}` | `2^n-2^{-n}` |

1 | 4 | 3 | 1.5 |

2 | 16 | 15 | 3.75 |

3 | 64 | 63 | 7.875 |

4 | 256 | 255 | 15.9375 |

5 | 1,024 | 1,023 | 31.96875 |

6 | 4,096 | 4,095 | 63.984375 |

7 | 16,384 | 16,383 | 127.9921875 |

8 | 65,536 | 65,535 | 255.99609375 |

9 | 262,144 | 262,143 | 511.998046875 |

10 | 1,048,576 | 1,048,575 | 1023.9990234375 |

11 | 4,194,304 | 4,194,303 | 2047.99951171875 |

12 | 16,777,216 | 16,777,215 | 4095.99975585938 |

13 | 67,108,864 | 67,108,863 | 8191.99987792969 |

14 | 268,435,456 | 268,435,455 | 16383.9999389648 |

15 | 1,073,741,824 | 1,073,741,823 | 32767.9999694824 |

16 | 4,294,967,296 | 4,294,967,295 | 65535.9999847412 |

17 | 17,179,869,184 | 17,179,869,183 | 131071.999992371 |

18 | 68,719,476,736 | 68,719,476,735 | 262143.999996185 |

19 | 274,877,906,944 | 274,877,906,943 | 524287.999998093 |

20 | 1,099,511,627,776 | 1,099,511,627,775 | 1048575.99999905 |

21 | 4,398,046,511,104 | 4,398,046,511,103 | 2097151.99999952 |

22 | 17,592,186,044,416 | 17,592,186,044,415 | 4194303.99999976 |

23 | 70,368,744,177,664 | 70,368,744,177,663 | 8388607.99999988 |

24 | 281,474,976,710,656 | 281,474,976,710,655 | 16777215.9999999 |

You can download the basic curve shapes for orders 1 to 10 and experiment yourself. Both square and circular forms are available.

*Clear, concise, legible and compelling.*

Making a scientific graphical abstract? Refer to my practical design guidelines and redesign examples to improve organization, design and clarity of your graphical abstracts.

An in-depth look at my process of reacting to a bad figure — how I design a poster and tell data stories.

Building on the method I used to analyze the 2008, 2012 and 2016 U.S. Presidential and Vice Presidential debates, I explore word usagein the 2020 Debates between Donald Trump and Joe Biden.

We are celebrating the publication of our 50th column!

To all our coauthors — thank you and see you in the next column!

*When modelling epidemics, some uncertainties matter more than others.*

Public health policy is always hampered by uncertainty. During a novel outbreak, nearly everything will be uncertain: the mode of transmission, the duration and population variability of latency, infection and protective immunity and, critically, whether the outbreak will fade out or turn into a major epidemic.

The uncertainty may be structural (which model?), parametric (what is `R_0`?), and/or operational (how well do masks work?).

This month, we continue our exploration of epidemiological models and look at how uncertainty affects forecasts of disease dynamics and optimization of intervention strategies.

We show how the impact of the uncertainty on any choice in strategy can be expressed using the Expected Value of Perfect Information (EVPI), which is the potential improvement in outcomes that could be obtained if the uncertainty is resolved before making a decision on the intervention strategy. In other words, by how much could we potentially increase effectiveness of our choice (e.g. lowering total disease burden) if we knew which model best reflects reality?

This column has an interactive supplemental component (download code) that allows you to explore the impact of uncertainty in `R_0` and immunity duration on timing and size of epidemic waves and the total burden of the outbreak and calculate EVPI for various outbreak models and scenarios.

Bjørnstad, O.N., Shea, K., Krzywinski, M. & Altman, N. (2020) Points of significance: Uncertainty and the management of epidemics. *Nature Methods* **17**.

Bjørnstad, O.N., Shea, K., Krzywinski, M. & Altman, N. (2020) Points of significance: Modeling infectious epidemics. *Nature Methods* **17**:455–456.

Bjørnstad, O.N., Shea, K., Krzywinski, M. & Altman, N. (2020) Points of significance: The SEIRS model for infectious disease dynamics. *Nature Methods* **17**:557–558.

Our design on the cover of Nature Genetics's August 2020 issue is “Dichotomy of Chromatin in Color” . Thanks to Dr. Andy Mungall for suggesting this terrific title.

The cover design accompanies our report in the issue Gagliardi, A., Porter, V.L., Zong, Z. *et al.* (2020) Analysis of Ugandan cervical carcinomas identifies human papillomavirus clade–specific epigenome and transcriptome landscapes. *Nature Genetics* **52**:800–810.