Martin Krzywinski / Genome Sciences Center / Martin Krzywinski / Genome Sciences Center / - contact me Martin Krzywinski / Genome Sciences Center / on Twitter Martin Krzywinski / Genome Sciences Center / - Lumondo Photography Martin Krzywinski / Genome Sciences Center / - Pi Art Martin Krzywinski / Genome Sciences Center / - Hilbertonians - Creatures on the Hilbert Curve
Twenty — minutes — maybe — more.Naomichoose four wordsmore quotes

hilbert: fun

In Silico Flurries: Computing a world of snow. Scientific American. 23 December 2017

visualization + design

Like paths? Got your lines twisted in a bunch?
Take a look at my 2014 Pi Day art that folds Pi.

Hilbert Curve Art, Hilbertonians and Monkeys

I collaborated with Scientific American to create a data graphic for the September 2014 issue. The graphic compared the genomes of the Denisovan, bonobo, chimp and gorilla, showing how our own genomes are almost identical to the Denisovan and closer to that of the bonobo and chimp than the gorilla.

Martin Krzywinski @MKrzywinski

Here you'll find Hilbert curve art, a introduction to Hilbertonians, the creatures that live on the curve, an explanation of the Scientific American graphic and downloadable SVG/EPS Hilbert curve files.

Hilbert curve

There are wheels within wheels in this village and fires within fires!
— Arthur Miller (The Crucible)

The Hilbert curve is one of many space-filling curves. It is a mapping between one dimension (e.g. a line) and multiple dimensions (e.g. a square, a cube, etc). It's useful because it preserves locality—points that are nearby on the line are usually mapped onto nearby points on the curve.

The Hilbert curve is a line that gives itself a hug.

It's a pretty strange mapping, to be sure. Although a point on a line maps uniquely onto the curve this is not the case in reverse. At infinite order the curve intersects itself infinitely many times! This shouldn't be a surprise if you consider that the unit square has the same number of points as the unit line. Now that's the real surprise! So surprising in fact that it apparently destabilized Cantor's mind, who made the initial discovery.

Bryan Hayes has a great introduction (Crinkly Curves) to the Hilbert curve at American Scientist.

If manipulated so that its ends are adjacent, the Hilbert curve becomes the Moore curve.

constructing the hilbert curve

The order 1 curve is generated by dividing a square into quadrants and connecting the centers of the quadrants with three lines. Which three connections are made is arbitrary—different choices result in rotations of the curve.

Hilbert curve. / Martin Krzywinski @MKrzywinski
First 8 orders of the space-filling Hilbert curve. Each square is 144 x 144 pixels. (zoom)

The order 6 curve is the highest order whose structure can be discerned at this figure resolution. Though just barely. The length of this curve is about 64 times the width of the square, so about 9,216 pixels! That's tight packing.

By order 7 the structure in the 620 pixel wide image (each square is 144 px wide) cannot be discerned. By order 8 the curve has 65,536 points, which exceeds the number of pixels its square in the figure. A square of 256 x 256 would be required to show all the points without downsampling.

Two order 10 curves have 1,048,576 points each and would approximately map onto all the pixels on an average monitor (1920 x 1200 pixels).

A curve of order 33 has `7.38 * 10^19` points and if drawn as a square of average body height would have points that are an atom's distance from one another (`10^{-10}` m).

mapping the line onto the square

By mapping the familiar rainbow onto the curve you can see how higher order curves "crinkle" (to borrow Bryan's term) around the square.

Hilbert curve. / Martin Krzywinski @MKrzywinski
First 8 orders of the space-filling Hilbert curve. Each square is 144 x 144 pixels. (zoom)

properties of the first 24 orders of the Hilbert curve

1 4 3 1.5
2 16 15 3.75
3 64 63 7.875
4 256 255 15.9375
5 1,024 1,023 31.96875
6 4,096 4,095 63.984375
7 16,384 16,383 127.9921875
8 65,536 65,535 255.99609375
9 262,144 262,143 511.998046875
10 1,048,576 1,048,575 1023.9990234375
11 4,194,304 4,194,303 2047.99951171875
12 16,777,216 16,777,215 4095.99975585938
13 67,108,864 67,108,863 8191.99987792969
14 268,435,456 268,435,455 16383.9999389648
15 1,073,741,824 1,073,741,823 32767.9999694824
16 4,294,967,296 4,294,967,295 65535.9999847412
17 17,179,869,184 17,179,869,183 131071.999992371
18 68,719,476,736 68,719,476,735 262143.999996185
19 274,877,906,944 274,877,906,943 524287.999998093
20 1,099,511,627,776 1,099,511,627,775 1048575.99999905
21 4,398,046,511,104 4,398,046,511,103 2097151.99999952
22 17,592,186,044,416 17,592,186,044,415 4194303.99999976
23 70,368,744,177,664 70,368,744,177,663 8388607.99999988
24 281,474,976,710,656 281,474,976,710,655 16777215.9999999

You can download the basic curve shapes for orders 1 to 10 and experiment yourself. Both square and circular forms are available.


news + thoughts

Statistics vs Machine Learning

Tue 03-04-2018
We conclude our series on Machine Learning with a comparison of two approaches: classical statistical inference and machine learning. The boundary between them is subject to debate, but important generalizations can be made.

Inference creates a mathematical model of the datageneration process to formalize understanding or test a hypothesis about how the system behaves. Prediction aims at forecasting unobserved outcomes or future behavior. Typically we want to do both and know how biological processes work and what will happen next. Inference and ML are complementary in pointing us to biologically meaningful conclusions.

Martin Krzywinski @MKrzywinski
Nature Methods Points of Significance column: Statistics vs machine learning. (read)

Statistics asks us to choose a model that incorporates our knowledge of the system, and ML requires us to choose a predictive algorithm by relying on its empirical capabilities. Justification for an inference model typically rests on whether we feel it adequately captures the essence of the system. The choice of pattern-learning algorithms often depends on measures of past performance in similar scenarios.

Bzdok, D., Krzywinski, M. & Altman, N. (2018) Points of Significance: Statistics vs machine learning. Nature Methods 15:233–234.

Background reading

Bzdok, D., Krzywinski, M. & Altman, N. (2017) Points of Significance: Machine learning: a primer. Nature Methods 14:1119–1120.

Bzdok, D., Krzywinski, M. & Altman, N. (2017) Points of Significance: Machine learning: supervised methods. Nature Methods 15:5–6.

...more about the Points of Significance column

Happy 2018 `\pi` Day—Boonies, burbs and boutiques of `\pi`

Wed 14-03-2018

Celebrate `\pi` Day (March 14th) and go to brand new places. Together with Jake Lever, this year we shrink the world and play with road maps.

Streets are seamlessly streets from across the world. Finally, a halva shop on the same block!

Martin Krzywinski @MKrzywinski
A great 10 km run loop between Istanbul, Copenhagen, San Francisco and Dublin. Stop off for halva, smørrebrød, espresso and a Guinness on the way. (details)

Intriguing and personal patterns of urban development for each city appear in the Boonies, Burbs and Boutiques series.

Martin Krzywinski @MKrzywinski
In the Boonies, Burbs and Boutiques of `\pi` we draw progressively denser patches using the digit sequence 159 to inform density. (details)

No color—just lines. Lines from Marrakesh, Prague, Istanbul, Nice and other destinations for the mind and the heart.

Martin Krzywinski @MKrzywinski
Roads from cities rearranged according to the digits of `\pi`. (details)

The art is featured in the Pi City on the Scientific American SA Visual blog.

Check out art from previous years: 2013 `\pi` Day and 2014 `\pi` Day, 2015 `\pi` Day, 2016 `\pi` Day and 2017 `\pi` Day.

Machine learning: supervised methods (SVM & kNN)

Thu 18-01-2018
Supervised learning algorithms extract general principles from observed examples guided by a specific prediction objective.

We examine two very common supervised machine learning methods: linear support vector machines (SVM) and k-nearest neighbors (kNN).

SVM is often less computationally demanding than kNN and is easier to interpret, but it can identify only a limited set of patterns. On the other hand, kNN can find very complex patterns, but its output is more challenging to interpret.

Martin Krzywinski @MKrzywinski
Nature Methods Points of Significance column: Machine learning: supervised methods (SVM & kNN). (read)

We illustrate SVM using a data set in which points fall into two categories, which are separated in SVM by a straight line "margin". SVM can be tuned using a parameter that influences the width and location of the margin, permitting points to fall within the margin or on the wrong side of the margin. We then show how kNN relaxes explicit boundary definitions, such as the straight line in SVM, and how kNN too can be tuned to create more robust classification.

Bzdok, D., Krzywinski, M. & Altman, N. (2018) Points of Significance: Machine learning: a primer. Nature Methods 15:5–6.

Background reading

Bzdok, D., Krzywinski, M. & Altman, N. (2017) Points of Significance: Machine learning: a primer. Nature Methods 14:1119–1120.

...more about the Points of Significance column

Human Versus Machine

Tue 16-01-2018
Balancing subjective design with objective optimization.

In a Nature graphics blog article, I present my process behind designing the stark black-and-white Nature 10 cover.

Nature 10, 18 December 2017

Machine learning: a primer

Thu 18-01-2018
Machine learning extracts patterns from data without explicit instructions.

In this primer, we focus on essential ML principles— a modeling strategy to let the data speak for themselves, to the extent possible.

The benefits of ML arise from its use of a large number of tuning parameters or weights, which control the algorithm’s complexity and are estimated from the data using numerical optimization. Often ML algorithms are motivated by heuristics such as models of interacting neurons or natural evolution—even if the underlying mechanism of the biological system being studied is substantially different. The utility of ML algorithms is typically assessed empirically by how well extracted patterns generalize to new observations.

Martin Krzywinski @MKrzywinski
Nature Methods Points of Significance column: Machine learning: a primer. (read)

We present a data scenario in which we fit to a model with 5 predictors using polynomials and show what to expect from ML when noise and sample size vary. We also demonstrate the consequences of excluding an important predictor or including a spurious one.

Bzdok, D., Krzywinski, M. & Altman, N. (2017) Points of Significance: Machine learning: a primer. Nature Methods 14:1119–1120.

...more about the Points of Significance column

Snowflake simulation

Tue 16-01-2018
Symmetric, beautiful and unique.

Just in time for the season, I've simulated a snow-pile of snowflakes based on the Gravner-Griffeath model.

Martin Krzywinski @MKrzywinski
A few of the beautiful snowflakes generated by the Gravner-Griffeath model. (explore)

The work is described as a wintertime tale in In Silico Flurries: Computing a world of snow and co-authored with Jake Lever in the Scientific American SA Blog.

Gravner, J. & Griffeath, D. (2007) Modeling Snow Crystal Growth II: A mesoscopic lattice map with plausible dynamics.