Martin Krzywinski / Genome Sciences Center / Martin Krzywinski / Genome Sciences Center / - contact me Martin Krzywinski / Genome Sciences Center / on Twitter Martin Krzywinski / Genome Sciences Center / - Lumondo Photography Martin Krzywinski / Genome Sciences Center / - Pi Art Martin Krzywinski / Genome Sciences Center / - Hilbertonians - Creatures on the Hilbert Curve
Safe, fallen down this way, I want to be just what I am.Cocteau Twinssafe at lastmore quotes

pixel: beautiful

DNA on 10th — street art, wayfinding and font

visualization + design

Like paths? Got your lines twisted in a bunch?
Take a look at my 2014 Pi Day art that folds Pi.

Hilbert Curve Art, Hilbertonians and Monkeys

I collaborated with Scientific American to create a data graphic for the September 2014 issue. The graphic compared the genomes of the Denisovan, bonobo, chimp and gorilla, showing how our own genomes are almost identical to the Denisovan and closer to that of the bonobo and chimp than the gorilla.

Martin Krzywinski @MKrzywinski

Here you'll find Hilbert curve art, a introduction to Hilbertonians, the creatures that live on the curve, an explanation of the Scientific American graphic and downloadable SVG/EPS Hilbert curve files.

Hilbertonians—creatures on the Hilbert Curve

Want these creepies on your wall?
Take a look at the Hilbertonian Posters and perhaps buy one. I take custom requests.

Hilbertonians: 101

Hilbertonians are creatures that live in the depths of the Hilbert curve. They live across three adjacent orders of the curve (e.g. 2, 3, 4). The come in many different personalities and many classes exist.

Hilbertonians - Creatures living on the Hilbert curve. / Martin Krzywinski @MKrzywinski
Meet the Hilbertonians. These are creatures that live on adjacent orders of the Hilbert curve. (zoom)

They are social—they always appear in multiples of 4. This is a consequence of how they are defined. A single Hilbertonian has never been seen.

Their genomes are 20 bases long. They only have 2 different types of bases. Out of a possible 220 = 1,048,576 genomes, only 104,976 (almost exactly 10%) produce living and breathing Hilbertonians, defined as those whose bodies form a contiguous shape. The other 943,600 are unfortunately unviable. The genomes of every Hilbertonian can be downloaded.


news + thoughts

Scientific data visualization: Aesthetic for diagrammatic clarity

Mon 13-01-2020

The scientific process works because all its output is empirically constrained.

My chapter from The Aesthetics of Scientific Data Representation, More than Pretty Pictures, in which I discuss the principles of data visualization and connect them to the concept of "quality" introduced by Robert Pirsig in Zen and the Art of Motorcycle Maintenance.

Yearning for the Infinite — Aleph 2

Mon 18-11-2019

Discover Cantor's transfinite numbers through my music video for the Aleph 2 track of Max Cooper's Yearning for the Infinite (album page, event page).

Martin Krzywinski @MKrzywinski
Yearning for the Infinite, Max Cooper at the Barbican Hall, London. Track Aleph 2. Video by Martin Krzywinski. Photo by Michal Augustini. (more)

I discuss the math behind the video and the system I built to create the video.

Hidden Markov Models

Mon 18-11-2019

Everything we see hides another thing, we always want to see what is hidden by what we see.
—Rene Magritte

A Hidden Markov Model extends a Markov chain to have hidden states. Hidden states are used to model aspects of the system that cannot be directly observed and themselves form a Markov chain and each state may emit one or more observed values.

Hidden states in HMMs do not have to have meaning—they can be used to account for measurement errors, compress multi-modal observational data, or to detect unobservable events.

Martin Krzywinski @MKrzywinski
Nature Methods Points of Significance column: Hidden Markov Models. (read)

In this column, we extend the cell growth model from our Markov Chain column to include two hidden states: normal and sedentary.

We show how to calculate forward probabilities that can predict the most likely path through the HMM given an observed sequence.

Grewal, J., Krzywinski, M. & Altman, N. (2019) Points of significance: Hidden Markov Models. Nature Methods 16:795–796.

Background reading

Altman, N. & Krzywinski, M. (2019) Points of significance: Markov Chains. Nature Methods 16:663–664.

Hola Mundo Cover

Sat 21-09-2019

My cover design for Hola Mundo by Hannah Fry. Published by Blackie Books.

Martin Krzywinski @MKrzywinski
Hola Mundo by Hannah Fry. Cover design is based on my 2013 `\pi` day art. (read)

Curious how the design was created? Read the full details.

Markov Chains

Tue 30-07-2019

You can look back there to explain things,
but the explanation disappears.
You'll never find it there.
Things are not explained by the past.
They're explained by what happens now.
—Alan Watts

A Markov chain is a probabilistic model that is used to model how a system changes over time as a series of transitions between states. Each transition is assigned a probability that defines the chance of the system changing from one state to another.

Martin Krzywinski @MKrzywinski
Nature Methods Points of Significance column: Markov Chains. (read)

Together with the states, these transitions probabilities define a stochastic model with the Markov property: transition probabilities only depend on the current state—the future is independent of the past if the present is known.

Once the transition probabilities are defined in matrix form, it is easy to predict the distribution of future states of the system. We cover concepts of aperiodicity, irreducibility, limiting and stationary distributions and absorption.

This column is the first part of a series and pairs particularly well with Alan Watts and Blond:ish.

Grewal, J., Krzywinski, M. & Altman, N. (2019) Points of significance: Markov Chains. Nature Methods 16:663–664.

1-bit zoomable gigapixel maps of Moon, Solar System and Sky

Mon 22-07-2019

Places to go and nobody to see.

Exquisitely detailed maps of places on the Moon, comets and asteroids in the Solar System and stars, deep-sky objects and exoplanets in the northern and southern sky. All maps are zoomable.

Martin Krzywinski @MKrzywinski
3.6 gigapixel map of the near side of the Moon, annotated with 6,733. (details)
Martin Krzywinski @MKrzywinski
100 megapixel and 10 gigapixel map of the Solar System on 20 July 2019, annotated with 758k asteroids, 1.3k comets and all planets and satellites. (details)
Martin Krzywinski @MKrzywinski
100 megapixle and 10 gigapixel map of the Northern Celestial Hemisphere, annotated with 44 million stars, 74,000 deep-sky objects and 3,000 exoplanets. (details)
Martin Krzywinski @MKrzywinski
100 megapixle and 10 gigapixel map of the Southern Celestial Hemisphere, annotated with 69 million stars, 88,000 deep-sky objects and 1000 exoplanets. (details)