Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - contact me Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca on Twitter Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - Lumondo Photography Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - Pi Art Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - Hilbertonians - Creatures on the Hilbert Curve
listen; there's a hell of a good universe next door: let's go.e.e. cummingsgo theremore quotes


DNA on 10th — street art, wayfinding and font


statistics + data

Nature Methods: Points of Significance

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Points of Significance column in Nature Methods. (Launch of Points of Significance)

Martin Krzywinski is a staff scientist at Canada’s Michael Smith Genome Sciences Centre.

Naomi Altman is a Professor of Statistics at The Pennsylvania State University.

contributing authors

Jasleen Grewal is a graduate student in the Jones lab at Canada's Michael Smith Genome Sciences Centre.

Kiranmoy Das is a faculty member at the Indian Statistical Institute in Kolkata, India.

Luca Greco is an Assistant Professor of Statistics at the University of Sannio in Benevento, Italy.

Geroge Luta Associate Professor of Biostatistics at the Georgetown University in Washington, DC, USA.

Byran Smucker is an Associate Professor of Statistics at Miami University in Oxford, OH, USA.

Danilo Bzdok is an Assistant Professor at the Department of Psychiatry, RWTH Aachen University, Germany, and a Visiting Professor at INRIA/Neurospin Saclay in France.

Jake Lever is a Postdoctoral Research Fellow in Bioengineering at Stanford University in Stanford, California, USA.

Paul Blainey is an Assistant Professor of Biological Engineering at MIT and Core Member of the Broad Institute.

Anthony Kulesa is a graduate student in the Department of Biological Engineering at MIT.

Jorge López Puga is a Professor of Research Methodology at UCAM Universidad Católica de Murcia.

VIEW ALL

news + thoughts

Markov Chains

Tue 30-07-2019

You can look back there to explain things,
but the explanation disappears.
You'll never find it there.
Things are not explained by the past.
They're explained by what happens now.
—Alan Watts

A Markov chain is a probabilistic model that is used to model how a system changes over time as a series of transitions between states. Each transition is assigned a probability that defines the chance of the system changing from one state to another.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Nature Methods Points of Significance column: Markov Chains. (read)

Together with the states, these transitions probabilities define a stochastic model with the Markov property: transition probabilities only depend on the current state—the future is independent of the past if the present is known.

Once the transition probabilities are defined in matrix form, it is easy to predict the distribution of future states of the system. We cover concepts of aperiodicity, irreducibility, limiting and stationary distributions and absorption.

This column is the first part of a series and pairs particularly well with Alan Watts and Blond:ish.

Grewal, J., Krzywinski, M. & Altman, N. (2019) Points of significance: Markov Chains. Nature Methods 16:663–664.

1-bit zoomable gigapixel maps of Moon, Solar System and Sky

Mon 22-07-2019

Places to go and nobody to see.

Exquisitely detailed maps of places on the Moon, comets and asteroids in the Solar System and stars, deep-sky objects and exoplanets in the northern and southern sky. All maps are zoomable.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
3.6 gigapixel map of the near side of the Moon, annotated with 6,733. (details)
Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
100 megapixel and 10 gigapixel map of the Solar System on 20 July 2019, annotated with 758k asteroids, 1.3k comets and all planets and satellites. (details)
Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
100 megapixle and 10 gigapixel map of the Northern Celestial Hemisphere, annotated with 44 million stars, 74,000 deep-sky objects and 3,000 exoplanets. (details)
Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
100 megapixle and 10 gigapixel map of the Southern Celestial Hemisphere, annotated with 69 million stars, 88,000 deep-sky objects and 1000 exoplanets. (details)

Quantile regression

Sat 01-06-2019
Quantile regression robustly estimates the typical and extreme values of a response.

Quantile regression explores the effect of one or more predictors on quantiles of the response. It can answer questions such as "What is the weight of 90% of individuals of a given height?"

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Nature Methods Points of Significance column: Quantile regression. (read)

Unlike in traditional mean regression methods, no assumptions about the distribution of the response are required, which makes it practical, robust and amenable to skewed distributions.

Quantile regression is also very useful when extremes are interesting or when the response variance varies with the predictors.

Das, K., Krzywinski, M. & Altman, N. (2019) Points of significance: Quantile regression. Nature Methods 16:451–452.

Background reading

Altman, N. & Krzywinski, M. (2015) Points of significance: Simple linear regression. Nature Methods 12:999–1000.

Analyzing outliers: Robust methods to the rescue

Sat 30-03-2019
Robust regression generates more reliable estimates by detecting and downweighting outliers.

Outliers can degrade the fit of linear regression models when the estimation is performed using the ordinary least squares. The impact of outliers can be mitigated with methods that provide robust inference and greater reliability in the presence of anomalous values.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Nature Methods Points of Significance column: Analyzing outliers: Robust methods to the rescue. (read)

We discuss MM-estimation and show how it can be used to keep your fitting sane and reliable.

Greco, L., Luta, G., Krzywinski, M. & Altman, N. (2019) Points of significance: Analyzing outliers: Robust methods to the rescue. Nature Methods 16:275–276.

Background reading

Altman, N. & Krzywinski, M. (2016) Points of significance: Analyzing outliers: Influential or nuisance. Nature Methods 13:281–282.

Two-level factorial experiments

Fri 22-03-2019
To find which experimental factors have an effect, simultaneously examine the difference between the high and low levels of each.

Two-level factorial experiments, in which all combinations of multiple factor levels are used, efficiently estimate factor effects and detect interactions—desirable statistical qualities that can provide deep insight into a system.

They offer two benefits over the widely used one-factor-at-a-time (OFAT) experiments: efficiency and ability to detect interactions.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Nature Methods Points of Significance column: Two-level factorial experiments. (read)

Since the number of factor combinations can quickly increase, one approach is to model only some of the factorial effects using empirically-validated assumptions of effect sparsity and effect hierarchy. Effect sparsity tells us that in factorial experiments most of the factorial terms are likely to be unimportant. Effect hierarchy tells us that low-order terms (e.g. main effects) tend to be larger than higher-order terms (e.g. two-factor or three-factor interactions).

Smucker, B., Krzywinski, M. & Altman, N. (2019) Points of significance: Two-level factorial experiments Nature Methods 16:211–212.

Background reading

Krzywinski, M. & Altman, N. (2014) Points of significance: Designing comparative experiments.. Nature Methods 11:597–598.

Happy 2019 `\pi` Day—
Digits, internationally

Tue 12-03-2019

Celebrate `\pi` Day (March 14th) and set out on an exploration explore accents unknown (to you)!

This year is purely typographical, with something for everyone. Hundreds of digits and hundreds of languages.

A special kids' edition merges math with color and fat fonts.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
116 digits in 64 languages. (details)
Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
223 digits in 102 languages. (details)

Check out art from previous years: 2013 `\pi` Day and 2014 `\pi` Day, 2015 `\pi` Day, 2016 `\pi` Day, 2017 `\pi` Day and 2018 `\pi` Day.

Tree of Emotional Life

Sun 17-02-2019

One moment you're :) and the next you're :-.

Make sense of it all with my Tree of Emotional life—a hierarchical account of how we feel.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
A section of the Tree of Emotional Life.

Find and snap to colors in an image

Sat 29-12-2018

One of my color tools, the colorsnap application snaps colors in an image to a set of reference colors and reports their proportion.

Below is Times Square rendered using the colors of the MTA subway lines.


Colors used by the New York MTA subway lines.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Times Square in New York City.
Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Times Square in New York City rendered using colors of the MTA subway lines.
Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Granger rainbow snapped to subway lines colors from four cities. (zoom)