Martin Krzywinski / Genome Sciences Center / Martin Krzywinski / Genome Sciences Center / - contact me Martin Krzywinski / Genome Sciences Center / on Twitter Martin Krzywinski / Genome Sciences Center / - Lumondo Photography Martin Krzywinski / Genome Sciences Center / - Pi Art Martin Krzywinski / Genome Sciences Center / - Hilbertonians - Creatures on the Hilbert Curve
Poetry is just the evidence of life. If your life is burning well, poetry is just the ashLeonard Cohenburn somethingmore quotes

statistics: exciting

Functional annotation of gene sequences—a visualization workshop. Poznan, Poland. Dec 12, 2015

statistics + data

Nature Methods: Points of Significance

Martin Krzywinski @MKrzywinski
Points of Significance column in Nature Methods. (Launch of Points of Significance)

Access all columns for free at Statistics for Biologists Nature Collection.

A Statistics Primer and Best Practices

The Points of Significance column was launched in September 2013 as an educational resource to authors and to provide practical suggestions about best practices in statistical analysis and reporting.

This month we launch a new column "Points of Significance" devoted to statistics, a topic of profound importance for biological research, but one that often doesn’t receive the attention it deserves.

The "aura of exactitude" that often surrounds statistics is one of the main notions that the Points of Significance column will attempt to dispel, while providing useful pointers on using and evaluating statistical measures.
—Dan Evanko, Let's Give Statistics the Attention it Deserves in Biological Research

The column is co-authored with Naomi Altman (Pennsylvania State University). Paul Blainey (Broad) is a contributing co-author.

Free Access

In February 2015, Nature Methods announced that the entire Points of Significance collection will be free.

When Nature Methods launched the Points of Significance column over a year ago we were hopeful that those biologists with a limited background in statistics, or who just needed a refresher, would find it accessible and useful for helping them improve the statistical rigor of their research. We have since received comments from researchers and educators in fields ranging from biology to meteorology who say they read the column regularly and use it in their courses. Hearing that the column has had a wider impact than we anticipated has been very encouraging and we hope the column continues for quite some time.
—Dan Evanko, Points of Significance now free access

Also, in a recent post on the ofschemesandmemes blog, a new statistics collection for biologists was announced.

The pieces range from comments, to advice on very specific experimental approaches, to the entire collection of the Points of Significance columns that address basic concepts in statistics in an experimental biology context. These columns, originally published in Nature Methods thanks to Martin Krzywinski and guest editor Naomi Altman, have already proven very popular with readers and teachers. Finally, the collection presents a web tool to create box plots among other resources.
—Veronique Kiermer, Statistics for biologists—A free Nature Collection

continuity and consistency

Each column is written with continuity and consistency in mind. Our goal is to never rely on concepts that we have not previously discussed. We do not assume previous statistical knowledge—only basic math. Concepts are illustrated using practical examples that embody the ideas without extraneous complicated details. All of the figures are designed with the same approach—as simple and self-contained as possible.


news + thoughts

Play the Bacteria Game

Thu 19-11-2015

Choose your own dust adventure!

Nobody likes dusting but everyone should find dust interesting.

Working with Jeannie Hunnicutt and with Jen Christiansen's art direction, I created this month's Scientific American Graphic Science visualization based on a recent paper The Ecology of microscopic life in household dust.

Martin Krzywinski @MKrzywinski
An analysis of dust reveals how the presence of men, women, dogs and cats affects the variety of bacteria in a household. Appears on Graphic Science page in December 2015 issue of Scientific American.

This was my third information graphic for the Graphic Science page. Unlike the previous ones, it's visually simple and ... interactive. Or, at least, as interactive as a printed page can be.

More of my American Scientific Graphic Science designs

Barberan A et al. (2015) The ecology of microscopic life in household dust. Proc. R. Soc. B 282: 20151139.

Names for 5,092 colors

Tue 03-11-2015

A very large list of named colors generated from combining some of the many lists that already exist (X11, Crayola, Raveling, Resene, wikipedia, xkcd, etc).

Martin Krzywinski @MKrzywinski
Confused? So am I. That's why I made a list.

For each color, coordinates in RGB, HSV, XYZ, Lab and LCH space are given along with the 5 nearest, as measured with ΔE, named neighbours.

I also provide a web service. Simply call this URL with an RGB string.

Simple Linear Regression

Sat 07-11-2015

It is possible to predict the values of unsampled data by using linear regression on correlated sample data.

This month, we begin our column with a quote, shown here in its full context from Box's paper Science and Statistics.

In applying mathematics to subjects such as physics or statistics we make tentative assumptions about the real world which we know are false but which we believe may be useful nonetheless. The physicist knows that particles have mass and yet certain results, approximating what really happens, may be derived from the assumption that they do not. Equally, the statistician knows, for example, that in nature there never was a normal distribution, there never was a straight line, yet with normal and linear assumptions, known to be false, he can often derive results which match, to a useful approximation, those found in the real world.
Box, G. J. Am. Stat. Assoc. 71, 791–799 (1976).

Martin Krzywinski @MKrzywinski
Nature Methods Points of Significance column: Simple Linear Regression. (read)

This column is our first in the series about regression. We show that regression and correlation are related concepts—they both quantify trends—and that the calculations for simple linear regression are essentially the same as for one-way ANOVA.

While correlation provides a measure of a specific kind of association between variables, regression allows us to fit correlated sample data to a model, which can be used to predict the values of unsampled data.

Altman, N. & Krzywinski, M. (2015) Points of Significance: Simple Linear Regression Nature Methods 12:999-1000.

Background reading

Altman, N. & Krzywinski, M. (2015) Points of significance: Association, correlation and causation Nature Methods 12:899-900.

Krzywinski, M. & Altman, N. (2014) Points of significance: Analysis of variance (ANOVA) and blocking. Nature Methods 11:699-700.

...more about the Points of Significance column

Association, correlation and causation

Sat 07-11-2015

Correlation implies association, but not causation. Conversely, causation implies association, but not correlation.

This month, we distinguish between association, correlation and causation.

Association, also called dependence, is a very general relationship: one variable provides information about the other. Correlation, on the other hand, is a specific kind of association: an increasing or decreasing trend. Not all associations are correlations. Moreover, causality can be connected only to association.

Martin Krzywinski @MKrzywinski
Nature Methods Points of Significance column: Association, correlation and causation. (read)

We discuss how correlation can be quantified using correlation coefficients (Pearson, Spearman) and show how spurious corrlations can arise in random data as well as very large independent data sets. For example, per capita cheese consumption is correlated with the number of people who died by becoming tangled in bedsheets.

Altman, N. & Krzywinski, M. (2015) Points of Significance: Association, correlation and causation Nature Methods 12:899-900.

...more about the Points of Significance column

Bayesian networks

Thu 01-10-2015

For making probabilistic inferences, a graph is worth a thousand words.

This month we continue with the theme of Bayesian statistics and look at Bayesian networks, which combine network analysis with Bayesian statistics.

In a Bayesian network, nodes represent entities, such as genes, and the influence that one gene has over another is represented by a edge and probability table (or function). Bayes' Theorem is used to calculate the probability of a state for any entity.

Martin Krzywinski @MKrzywinski
Nature Methods Points of Significance column: Bayesian networks. (read)

In our previous columns about Bayesian statistics, we saw how new information (likelihood) can be incorporated into the probability model (prior) to update our belief of the state of the system (posterior). In the context of a Bayesian network, relationships called conditional dependencies can arise between nodes when information is added to the network. Using a small gene regulation network we show how these dependencies may connect nodes along different paths.

Background reading

Puga, J.L, Krzywinski, M. & Altman, N. (2015) Points of Significance: Bayesian Statistics Nature Methods 12:277-278.

Puga, J.L, Krzywinski, M. & Altman, N. (2015) Points of Significance: Bayes' Theorem Nature Methods 12:277-278.

...more about the Points of Significance column

Unentangling complex plots

Fri 10-07-2015

The Points of Significance column is on vacation this month.

Meanwhile, we're showing you how to manage small multiple plots in the Points of View column Unentangling Complex Plots.

Martin Krzywinski @MKrzywinski
Nature Methods Points of View column: Unentangling complex plots. (download, more about Points of View)

Data in small multiples can vary in range, noise level and trend. Gregor McInerny and myself show you how you can deal with this by cropped and scaling the multiples to a different range to emphasize relative changes while preserving the context of the full data range to show absolute changes.

McInerny, G. & Krzywinski, M. (2015) Points of View: Unentangling complex plots. Nature Methods 12:591.

...more about the Points of View column

Fixing Jurassic World science visualizations

Fri 10-07-2015

The Jurassic World Creation Lab webpage shows you how one might create a dinosaur from a sample of DNA. First extract, sequence, assemble and fill in the gaps in the DNA and then incubate in an egg and wait.

Martin Krzywinski @MKrzywinski
We can't get dinosaur genomics right, but we can get it less wrong. (a) Corn genome used in Jurassic World Creation Lab website. Image is from the Science publication B73 Maize Genome: Complexity, Diversity, and Dynamics. Photo and composite by Universal Studios and Amblin Entertainment. (b) Random data on 8 chromosomes from chicken genome resized to triceratops genome size (3.2 Gb). Image by Martin Krzywinski. (c) Actual genome data for lizard genome, UCSC anoCar2.0, May 2010. Image by Martin Krzywinski. Triceratops outline in (b,c) from wikipedia.

With enough time, you'll grow your own brand new dinosaur. Or a stalk of corn ... with more teeth.

What went wrong? Let me explain.

Martin Krzywinski @MKrzywinski
Corn World: Teeth on the Cob.

Printing Genomes

Tue 07-07-2015

You've seen bound volumes of printouts of the human reference genome. But what if at the Genome Sciences Center we wanted to print everything we sequence today?

Martin Krzywinski @MKrzywinski
Curiously, printing is 44 times as expensive as sequencing. (details)