Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - contact me Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca on Twitter Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - Lumondo Photography Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - Hilbertonians - Creatures on the Hilbert Curve
This love's a nameless dream.Cocteau Twinstry to figure it out

statistics: beautiful



More than Pretty Pictures—Aesthetics of Data Representation, Denmark, April 13–16, 2015


statistics + data

Nature Methods: Points of Significance

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Points of Significance column in Nature Methods. (Launch of Points of Significance)

A Statistics Primer and Best Practices

The Points of Significance column was launched in September 2013 as an educational resource to authors and to provide practical suggestions about best practices in statistical analysis and reporting.

This month we launch a new column "Points of Significance" devoted to statistics, a topic of profound importance for biological research, but one that often doesn’t receive the attention it deserves.

The "aura of exactitude" that often surrounds statistics is one of the main notions that the Points of Significance column will attempt to dispel, while providing useful pointers on using and evaluating statistical measures.
—Dan Evanko, Let's Give Statistics the Attention it Deserves in Biological Research

The column is co-authored with Naomi Altman (Pennsylvania State University). Paul Blainey (Broad) is a contributing co-author.

Free Access

In February 2015, Nature Methods announced that the entire Points of Significance collection will be free.

When Nature Methods launched the Points of Significance column over a year ago we were hopeful that those biologists with a limited background in statistics, or who just needed a refresher, would find it accessible and useful for helping them improve the statistical rigor of their research. We have since received comments from researchers and educators in fields ranging from biology to meteorology who say they read the column regularly and use it in their courses. Hearing that the column has had a wider impact than we anticipated has been very encouraging and we hope the column continues for quite some time.
—Dan Evanko, Points of Significance now free access

Also, in a recent post on the ofschemesandmemes blog, a new statistics collection for biologists was announced.

The pieces range from comments, to advice on very specific experimental approaches, to the entire collection of the Points of Significance columns that address basic concepts in statistics in an experimental biology context. These columns, originally published in Nature Methods thanks to Martin Krzywinski and guest editor Naomi Altman, have already proven very popular with readers and teachers. Finally, the collection presents a web tool to create box plots among other resources.
—Veronique Kiermer, Statistics for biologists—A free Nature Collection

continuity and consistency

Each column is written with continuity and consistency in mind. Our goal is to never rely on concepts that we have not previously discussed. We do not assume previous statistical knowledge—only basic math. Concepts are illustrated using practical examples that embody the ideas without extraneous complicated details. All of the figures are designed with the same approach—as simple and self-contained as possible.

news + thoughts

Color palettes for color blindness

Sun 01-03-2015

In an audience of 8 men and 8 women, chances are 50% that at least one has some degree of color blindness1. When encoding information or designing content, use colors that is color-blind safe.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
A 12-color palette safe for color blindness

Points of Significance Column Now Open Access

Tue 10-02-2015

Nature Methods has announced the launch of a new statistics collection for biologists.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Nature Methods Points of Significance column is now open access. (column archive)

As part of that collection, announced that the entire Points of Significance collection is now open access.

This is great news for educators—the column can now be freely distributed in classrooms.

...more about the Points of Significance column

Before and After—Designing Tiny Figures for Nature Methods

Tue 13-01-2015

I've posted a writeup about the design and redesign process behind the figures in our Nature Methods Points of Significance column.

I have selected several figures from our past columns and show how they evolved from their draft to published versions.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Fig 2 from Points of Significance: Nested designs. (Krzywinski, M. & Altman, N. (2014) Nature Methods 11:977-978.) (...more)

Clarity, concision and space constraints—we have only 3.4" of horizontal space— all have to be balanced for a figure to be effective.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Fig 2c (excerpt) from Points of Significance: Designing comparative experiments. (Krzywinski, M. & Altman, N. (2014) Nature Methods 11:597-598.) (...more)

It's nearly impossible to find case studies of scientific articles (or figures) through the editing and review process. Nobody wants to show their drafts. With this writeup I hope to add to this space and encourage others to reveal their process. Students love this. See whether you agree with my decisions!

Sources of Variation

Thu 08-01-2015

Past columns have described experimental designs that mitigate the effect of variation: random assignment, blocking and replication.

The goal of these designs is to observe a reproducible effect that can be due only to the treatment, avoiding confounding and bias. Simultaneously, to sample enough variability to estimate how much we expect the effect to differ if the measurements are repeated with similar but not identical samples (replicates).

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Nature Methods Points of Significance column: Sources of Variation. (read)

We need to distinguish between sources of variation that are nuisance factors in our goal to measure mean biological effects from those that are required to assess how much effects vary in the population.

Altman, N. & Krzywinski, M. (2014) Points of Significance: Two Factor Designs Nature Methods 11:5-6.

Background reading

1. Krzywinski, M. & Altman, N. (2014) Points of Significance: Designing Comparative Experiments Nature Methods 11:597-598.

2. Krzywinski, M. & Altman, N. (2014) Points of Significance: Analysis of variance (ANOVA) and blocking Nature Methods 11:699-700.

3. Blainey, P., Krzywinski, M. & Altman, N. (2014) Points of Significance: Replication Nature Methods 11:879-880.

...more about the Points of Significance column

Two Factor Designs

Tue 09-12-2014

We've previously written about how to analyze the impact of one variable in our ANOVA column. Complex biological systems are rarely so obliging—multiple experimental factors interact and producing effects.

ANOVA is a natural way to analyze multiple factors. It can incorporate the possibility that the factors interact—the effect of one factor depends on the level of another factor. For example, the potency of a drug may depend on the subject's diet.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Nature Methods Points of Significance column: Two Factor Designs. (read)

We can increase the power of the analysis by allowing for interaction, as well as by blocking.

Krzywinski, M., Altman, (2014) Points of Significance: Two Factor Designs Nature Methods 11:1187-1188.

Background reading

Blainey, P., Krzywinski, M. & Altman, N. (2014) Points of Significance: Replication Nature Methods 11:879-880.

Krzywinski, M. & Altman, N. (2014) Points of Significance: Analysis of variance (ANOVA) and blocking Nature Methods 11:699-700.

Krzywinski, M. & Altman, N. (2014) Points of Significance: Designing Comparative Experiments Nature Methods 11:597-598.

...more about the Points of Significance column

Nested Designs—Assessing Sources of Noise

Mon 29-09-2014

Sources of noise in experiments can be mitigated and assessed by nested designs. This kind of experimental design naturally models replication, which was the topic of last month's column.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Nature Methods Points of Significance column: Nested designs. (read)

Nested designs are appropriate when we want to use the data derived from experimental subjects to make general statements about populations. In this case, the subjects are random factors in the experiment, in contrast to fixed factors, such as we've seen previously.

In ANOVA analysis, random factors provide information about the amount of noise contributed by each factor. This is different from inferences made about fixed factors, which typically deal with a change in mean. Using the F-test, we can determine whether each layer of replication (e.g. animal, tissue, cell) contributes additional variation to the overall measurement.

Krzywinski, M., Altman, N. & Blainey, P. (2014) Points of Significance: Nested designs Nature Methods 11:977-978.

Background reading

Blainey, P., Krzywinski, M. & Altman, N. (2014) Points of Significance: Replication Nature Methods 11:879-880.

Krzywinski, M. & Altman, N. (2014) Points of Significance: Analysis of variance (ANOVA) and blocking Nature Methods 11:699-700.

Krzywinski, M. & Altman, N. (2014) Points of Significance: Designing Comparative Experiments Nature Methods 11:597-598.

...more about the Points of Significance column

Replication—Quality over Quantity

Tue 02-09-2014

It's fitting that the column published just before Labor day weekend is all about how to best allocate labor.

Replication is used to decrease the impact of variability from parts of the experiment that contribute noise. For example, we might measure data from more than one mouse to attempt to generalize over all mice.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Nature Methods Points of Significance column: Replication. (read)

It's important to distinguish technical replicates, which attempt to capture the noise in our measuring apparatus, from biological replicates, which capture biological variation. The former give us no information about biological variation and cannot be used to directly make biological inferences. To do so is to commit pseudoreplication. Technical replicates are useful to reduce the noise so that we have a better chance to detect a biologically meaningful signal.

Blainey, P., Krzywinski, M. & Altman, N. (2014) Points of Significance: Replication Nature Methods 11:879-880.

Background reading

Krzywinski, M. & Altman, N. (2014) Points of Significance: Analysis of variance (ANOVA) and blocking Nature Methods 11:699-700.

Krzywinski, M. & Altman, N. (2014) Points of Significance: Designing Comparative Experiments Nature Methods 11:597-598.

...more about the Points of Significance column

Monkeys on a Hilbert Curve—Scientific American Graphic

Tue 19-08-2014

I was commissioned by Scientific American to create an information graphic that showed how our genomes are more similar to those of the chimp and bonobo than to the gorilla.

I had about 5 x 5 inches of print space to work with. For 4 genomes? No problem. Bring out the Hilbert curve!

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Our genomes are much more similar to the chimp and bonobo than to the gorilla. And, we're practically still Denisovans. (details)

To accompany the piece, I will be posting to the Scientific American blog about the process of creating the figure. And to emphasize that the genome is not a blueprint!

As part of this project, I created some Hilbert curve art pieces. And while exploring, found thousands of Hilbertonians!