Martin Krzywinski / Genome Sciences Center / Martin Krzywinski / Genome Sciences Center / - contact me Martin Krzywinski / Genome Sciences Center / on Twitter Martin Krzywinski / Genome Sciences Center / - Lumondo Photography Martin Krzywinski / Genome Sciences Center / - Pi Art Martin Krzywinski / Genome Sciences Center / - Hilbertonians - Creatures on the Hilbert Curve
This love's a nameless dream.Cocteau Twinstry to figure it outmore quotes

science: beautiful

EMBO Practical Course: Bioinformatics and Genome Analysis, 5–17 June 2017.

statistics + data

Nature Methods: Points of Significance

Martin Krzywinski @MKrzywinski
Points of Significance column in Nature Methods. (Launch of Points of Significance)

Access all columns for free at Statistics for Biologists Nature Collection.

A Statistics Primer and Best Practices

The Points of Significance column was launched in September 2013 as an educational resource to authors and to provide practical suggestions about best practices in statistical analysis and reporting.

This month we launch a new column "Points of Significance" devoted to statistics, a topic of profound importance for biological research, but one that often doesn’t receive the attention it deserves.

The "aura of exactitude" that often surrounds statistics is one of the main notions that the Points of Significance column will attempt to dispel, while providing useful pointers on using and evaluating statistical measures.
—Dan Evanko, Let's Give Statistics the Attention it Deserves in Biological Research

The column is co-authored with Naomi Altman (Pennsylvania State University). Paul Blainey (Broad) is a contributing co-author.

Free Access

In February 2015, Nature Methods announced that the entire Points of Significance collection will be free.

When Nature Methods launched the Points of Significance column over a year ago we were hopeful that those biologists with a limited background in statistics, or who just needed a refresher, would find it accessible and useful for helping them improve the statistical rigor of their research. We have since received comments from researchers and educators in fields ranging from biology to meteorology who say they read the column regularly and use it in their courses. Hearing that the column has had a wider impact than we anticipated has been very encouraging and we hope the column continues for quite some time.
—Dan Evanko, Points of Significance now free access

Also, in a recent post on the ofschemesandmemes blog, a new statistics collection for biologists was announced.

The pieces range from comments, to advice on very specific experimental approaches, to the entire collection of the Points of Significance columns that address basic concepts in statistics in an experimental biology context. These columns, originally published in Nature Methods thanks to Martin Krzywinski and guest editor Naomi Altman, have already proven very popular with readers and teachers. Finally, the collection presents a web tool to create box plots among other resources.
—Veronique Kiermer, Statistics for biologists—A free Nature Collection

continuity and consistency

Each column is written with continuity and consistency in mind. Our goal is to never rely on concepts that we have not previously discussed. We do not assume previous statistical knowledge—only basic math. Concepts are illustrated using practical examples that embody the ideas without extraneous complicated details. All of the figures are designed with the same approach—as simple and self-contained as possible.


news + thoughts

Personal Oncogenomics Program 5 Year Anniversary Art

Wed 26-07-2017

The artwork was created in collaboration with my colleagues at the Genome Sciences Center to celebrate the 5 year anniversary of the Personalized Oncogenomics Program (POG).

Martin Krzywinski @MKrzywinski
5 Years of Personalized Oncogenomics Program at Canada's Michael Smith Genome Sciences Centre. The poster shows 545 cancer cases. (left) Cases ordered chronologically by case number. (right) Cases grouped by diagnosis (tissue type) and then by similarity within group.

The Personal Oncogenomics Program (POG) is a collaborative research study including many BC Cancer Agency oncologists, pathologists and other clinicians along with Canada's Michael Smith Genome Sciences Centre with support from BC Cancer Foundation.

The aim of the program is to sequence, analyze and compare the genome of each patient's cancer—the entire DNA and RNA inside tumor cells— in order to understand what is enabling it to identify less toxic and more effective treatment options.

Principal component analysis

Thu 06-07-2017
PCA helps you interpret your data, but it will not always find the important patterns.

Principal component analysis (PCA) simplifies the complexity in high-dimensional data by reducing its number of dimensions.

Martin Krzywinski @MKrzywinski
Nature Methods Points of Significance column: Principal component analysis. (read)

To retain trend and patterns in the reduced representation, PCA finds linear combinations of canonical dimensions that maximize the variance of the projection of the data.

PCA is helpful in visualizing high-dimensional data and scatter plots based on 2-dimensional PCA can reveal clusters.

Altman, N. & Krzywinski, M. (2017) Points of Significance: Principal component analysis. Nature Methods 14:641–642.

Background reading

Altman, N. & Krzywinski, M. (2017) Points of Significance: Clustering. Nature Methods 14:545–546.

...more about the Points of Significance column

`k` index: a weightlighting and Crossfit performance measure

Wed 07-06-2017

Similar to the `h` index in publishing, the `k` index is a measure of fitness performance.

To achieve a `k` index for a movement you must perform `k` unbroken reps at `k`% 1RM.

The expected value for the `k` index is probably somewhere in the range of `k = 26` to `k=35`, with higher values progressively more difficult to achieve.

In my `k` index introduction article I provide detailed explanation, rep scheme table and WOD example.

Dark Matter of the English Language—the unwords

Wed 07-06-2017

I've applied the char-rnn recurrent neural network to generate new words, names of drugs and countries.

The effect is intriguing and facetious—yes, those are real words.

But these are not: necronology, abobionalism, gabdologist, and nonerify.

These places only exist in the mind: Conchar and Pobacia, Hzuuland, New Kain, Rabibus and Megee Islands, Sentip and Sitina, Sinistan and Urzenia.

And these are the imaginary afflictions of the imagination: ictophobia, myconomascophobia, and talmatomania.

And these, of the body: ophalosis, icabulosis, mediatopathy and bellotalgia.

Want to name your baby? Or someone else's baby? Try Ginavietta Xilly Anganelel or Ferandulde Hommanloco Kictortick.

When taking new therapeutics, never mix salivac and labromine. And don't forget that abadarone is best taken on an empty stomach.

And nothing increases the chance of getting that grant funded than proposing the study of a new –ome! We really need someone to looking into the femome and manome.

Dark Matter of the Genome—the nullomers

Wed 31-05-2017

An exploration of things that are missing in the human genome. The nullomers.

Julia Herold, Stefan Kurtz and Robert Giegerich. Efficient computation of absent words in genomic sequences. BMC Bioinformatics (2008) 9:167


Sat 01-07-2017
Clustering finds patterns in data—whether they are there or not.

We've already seen how data can be grouped into classes in our series on classifiers. In this column, we look at how data can be grouped by similarity in an unsupervised way.

Martin Krzywinski @MKrzywinski
Nature Methods Points of Significance column: Clustering. (read)

We look at two common clustering approaches: `k`-means and hierarchical clustering. All clustering methods share the same approach: they first calculate similarity and then use it to group objects into clusters. The details of the methods, and outputs, vary widely.

Altman, N. & Krzywinski, M. (2017) Points of Significance: Clustering. Nature Methods 14:545–546.

Background reading

Lever, J., Krzywinski, M. & Altman, N. (2016) Points of Significance: Logistic regression. Nature Methods 13:541-542.

Lever, J., Krzywinski, M. & Altman, N. (2016) Points of Significance: Classifier evaluation. Nature Methods 13:603-604.

...more about the Points of Significance column

What's wrong with pie charts?

Thu 25-05-2017

In this redesign of a pie chart figure from a Nature Medicine article [1], I look at how to organize and present a large number of categories.

I first discuss some of the benefits of a pie chart—there are few and specific—and its shortcomings—there are few but fundamental.

I then walk through the redesign process by showing how the tumor categories can be shown more clearly if they are first aggregated into a small number groups.

(bottom left) Figure 2b from Zehir et al. Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. (2017) Nature Medicine doi:10.1038/nm.4333

Tabular Data

Tue 11-04-2017
Tabulating the number of objects in categories of interest dates back to the earliest records of commerce and population censuses.

After 30 columns, this is our first one without a single figure. Sometimes a table is all you need.

In this column, we discuss nominal categorical data, in which data points are assigned to categories in which there is no implied order. We introduce one-way and two-way tables and the `\chi^2` and Fisher's exact tests.

Altman, N. & Krzywinski, M. (2017) Points of Significance: Tabular data. Nature Methods 14:329–330.

...more about the Points of Significance column