Martin Krzywinski / Canada's Michael Smith Genome Sciences Centre / mkweb.bcgsc.ca Martin Krzywinski / Canada's Michael Smith Genome Sciences Centre / mkweb.bcgsc.ca - contact me Martin Krzywinski / Canada's Michael Smith Genome Sciences Centre / mkweb.bcgsc.ca on Twitter Martin Krzywinski / Canada's Michael Smith Genome Sciences Centre / mkweb.bcgsc.ca - Lumondo Photography Martin Krzywinski / Canada's Michael Smith Genome Sciences Centre / mkweb.bcgsc.ca - Pi Art Martin Krzywinski / Canada's Michael Smith Genome Sciences Centre / mkweb.bcgsc.ca - Hilbertonians - Creatures on the Hilbert CurveMartin Krzywinski / Canada's Michael Smith Genome Sciences Centre / mkweb.bcgsc.ca - Pi Day 2020 - Piku
And she looks like the moon. So close and yet, so far.Future Islandsaim highmore quotes

hilbertonians: fun


The Outbreak Poems — artistic emissions in a pandemic


visualization + design

Like paths? Got your lines twisted in a bunch?
Take a look at my 2014 Pi Day art that folds Pi.

Hilbert Curve Art, Hilbertonians and Monkeys

I collaborated with Scientific American to create a data graphic for the September 2014 issue. The graphic compared the genomes of the Denisovan, bonobo, chimp and gorilla, showing how our own genomes are almost identical to the Denisovan and closer to that of the bonobo and chimp than the gorilla.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca

Here you'll find Hilbert curve art, a introduction to Hilbertonians, the creatures that live on the curve, an explanation of the Scientific American graphic and downloadable SVG/EPS Hilbert curve files.

Hilbertonians—creatures on the Hilbert Curve

Want these creepies on your wall?
Take a look at the Hilbertonian Posters and perhaps buy one. I take custom requests.

Hilbertonians: 101

Hilbertonians are creatures that live in the depths of the Hilbert curve. They live across three adjacent orders of the curve (e.g. 2, 3, 4). The come in many different personalities and many classes exist.

Hilbertonians - Creatures living on the Hilbert curve. / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Meet the Hilbertonians. These are creatures that live on adjacent orders of the Hilbert curve. (zoom)

They are social—they always appear in multiples of 4. This is a consequence of how they are defined. A single Hilbertonian has never been seen.

Their genomes are 20 bases long. They only have 2 different types of bases. Out of a possible 220 = 1,048,576 genomes, only 104,976 (almost exactly 10%) produce living and breathing Hilbertonians, defined as those whose bodies form a contiguous shape. The other 943,600 are unfortunately unviable. The genomes of every Hilbertonian can be downloaded.

VIEW ALL

news + thoughts

Poster Design Guidelines

Wed 15-07-2020

Clear, concise, legible and compelling.

The PDF template is a poster about making posters. It provides design, typography and data visualiation tips with minimum fuss. Follow its advice until you have developed enough design sobriety and experience to know when to go your own way.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Poster Design Guidelines — Clear, concise, legible and compelling..

The SEIRS model for infectious disease dynamics

Thu 18-06-2020

Realistic models of epidemics account for latency, loss of immunity, births and deaths.

We continue with our discussion about epidemic models and show how births, deaths and loss of immunity can create epidemic waves—a periodic fluctuation in the fraction of population that is infected.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Nature Methods Points of Significance column: The SEIRS model for infectious disease dynamics. (read)

This column has an interactive supplemental component (download code) that allows you to explore epidemic waves and introduces the idea of the phase plane, a compact way to understand the evolution of an epidemic over its entire course.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Nature Methods Points of Significance column: The SEIRS model for infectious disease dynamics. (Interactive supplemental materials)

Bjørnstad, O.N., Shea, K., Krzywinski, M. & Altman, N. (2020) Points of significance: The SEIRS model for infectious disease dynamics. Nature Methods 17:557–558.

Background reading

Bjørnstad, O.N., Shea, K., Krzywinski, M. & Altman, N. (2020) Points of significance: Modeling infectious epidemics. Nature Methods 17:455–456.

Gene Machines

Fri 05-06-2020

Shifting soundscapes, textures and rhythmic loops produced by laboratory machines.

In commemoration of the 20th anniversary of Canada's Michael Smith Genome Sciences Centre, Segue was commissioned to create an original composition based on audio recordings from the GSC's laboratory equipment, robots and computers—to make “music” from the noise they produce.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Gene Machines by Segue. Now available on vinyl.

Virus Mutations Reveal How COVID-19 Really Spread

Mon 01-06-2020

Genetic sequences of the coronavirus tell story of when the virus arrived in each country and where it came from.

Our graphic in Scientific American's Graphic Science section in the June 2020 issue shows a phylogenetic tree based on a snapshot of the data model from Nextstrain as of 31 March 2020.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Virus Mutations Reveal How COVID-19 Really Spread. Text by Mark Fischetti (Senior Editor), art direction by Jen Christiansen (Senior Graphics Editor), source: Nextstrain (enabled by data from GISAID).

Cover of Nature Cancer April 2020

Mon 27-04-2020

Our design on the cover of Nature Cancer's April 2020 issue shows mutation spectra of patients from the POG570 cohort of 570 individuals with advanced metastatic cancer.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Each ellipse system represents the mutation spectrum of an individual patient. Individual ellipses in the system correspond to the number of base changes in a given class and are layered by mutation count. Ellipse angle is controlled by the proportion of mutations in a class within the sample and its size is determined by a sigmoid mapping of mutation count scaled within the layer. The opacity of each system represents the duration since the diagnosis of advanced disease. (read more)

The cover design accompanies our report in the issue Pleasance, E., Titmuss, E., Williamson, L. et al. (2020) Pan-cancer analysis of advanced patient tumors reveals interactions between therapy and genomic landscapes. Nat Cancer 1:452–468.

Modeling infectious epidemics

Tue 16-06-2020

Every day sadder and sadder news of its increase. In the City died this week 7496; and of them, 6102 of the plague. But it is feared that the true number of the dead this week is near 10,000 ....
—Samuel Pepys, 1665

This month, we begin a series of columns on epidemiological models. We start with the basic SIR model, which models the spread of an infection between three groups in a population: susceptible, infected and recovered.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Nature Methods Points of Significance column: Modeling infectious epidemics. (read)

We discuss conditions under which an outbreak occurs, estimates of spread characteristics and the effects that mitigation can play on disease trajectories. We show the trends that arise when "flattenting the curve" by decreasing `R_0`.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Nature Methods Points of Significance column: Modeling infectious epidemics. (read)

This column has an interactive supplemental component (download code) that allows you to explore how the model curves change with parameters such as infectious period, basic reproduction number and vaccination level.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Nature Methods Points of Significance column: Modeling infectious epidemics. (Interactive supplemental materials)

Bjørnstad, O.N., Shea, K., Krzywinski, M. & Altman, N. (2020) Points of significance: Modeling infectious epidemics. Nature Methods 17:455–456.