Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - contact me Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca on Twitter Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - Lumondo Photography Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - Pi Art Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - Hilbertonians - Creatures on the Hilbert Curve
Twenty — minutes — maybe — more.Naomichoose four words

filling space: fun


Bioinformatics and Genome Analysis Course. Izmir International Biomedicine and Genome Institute, Izmir, Turkey. May 2–14, 2016


visualization + design

Like paths? Got your lines twisted in a bunch?
Take a look at my 2014 Pi Day art that folds Pi.

Hilbert Curve Art, Hilbertonians and Monkeys

I collaborated with Scientific American to create a data graphic for the September 2014 issue. The graphic compared the genomes of the Denisovan, bonobo, chimp and gorilla, showing how our own genomes are almost identical to the Denisovan and closer to that of the bonobo and chimp than the gorilla.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca

Here you'll find Hilbert curve art, a introduction to Hilbertonians, the creatures that live on the curve, an explanation of the Scientific American graphic and downloadable SVG/EPS Hilbert curve files.

Hilbert curve art posters

There are wheels within wheels in this village and fires within fires!
— Arthur Miller (The Crucible)

Recursive art. Same line. A variety of styles. Font is Gotham Light.

You can download the basic curve shapes for orders 1 to 10 and experiment yourself. Both square and circular forms are available.

All the art here is available for purchase at Fine Art America.

Here are some samples of the posters. They are classified into categories.


news + thoughts

Bayesian networks

Sun 30-08-2015

This month we continue with the theme of Bayesian statistics and look at Bayesian networks, which combine network analysis with Bayesian statistics.

In a Bayesian network, nodes represent entities, such as genes, and the influence that one gene has over another is represented by a edge and probability table (or function). Bayes' Theorem is used to calculate the probability of a state for any entity.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Nature Methods Points of Significance column: Bayesian networks. (read)

In our previous columns about Bayesian statistics, we saw how new information (likelihood) can be incorporated into the probability model (prior) to update our belief of the state of the system (posterior). In the context of a Bayesian network, relationships called conditional dependencies can arise between nodes when information is added to the network. Using a small gene regulation network we show how these dependencies may connect nodes along different paths.

Background reading

Puga, J.L, Krzywinski, M. & Altman, N. (2015) Points of Significance: Bayesian Statistics Nature Methods 12:277-278.

Puga, J.L, Krzywinski, M. & Altman, N. (2015) Points of Significance: Bayes' Theorem Nature Methods 12:277-278.

...more about the Points of Significance column

Unentangling complex plots

Fri 10-07-2015

The Points of Significance column is on vacation this month.

Meanwhile, we're showing you how to manage small multiple plots in the Points of View column Unentangling Complex Plots.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Nature Methods Points of View column: Unentangling complex plots. (download, more about Points of View)

Data in small multiples can vary in range, noise level and trend. Gregor McInerny and myself show you how you can deal with this by cropped and scaling the multiples to a different range to emphasize relative changes while preserving the context of the full data range to show absolute changes.

McInerny, G. & Krzywinski, M. (2015) Points of View: Unentangling complex plots. Nature Methods 12:591.

...more about the Points of View column

Fixing Jurassic World science visualizations

Fri 10-07-2015

The Jurassic World Creation Lab webpage shows you how one might create a dinosaur from a sample of DNA. First extract, sequence, assemble and fill in the gaps in the DNA and then incubate in an egg and wait.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
We can't get dinosaur genomics right, but we can get it less wrong. (a) Corn genome used in Jurassic World Creation Lab website. Image is from the Science publication B73 Maize Genome: Complexity, Diversity, and Dynamics. Photo and composite by Universal Studios and Amblin Entertainment. (b) Random data on 8 chromosomes from chicken genome resized to triceratops genome size (3.2 Gb). Image by Martin Krzywinski. (c) Actual genome data for lizard genome, UCSC anoCar2.0, May 2010. Image by Martin Krzywinski. Triceratops outline in (b,c) from wikipedia.

With enough time, you'll grow your own brand new dinosaur. Or a stalk of corn ... with more teeth.

What went wrong? Let me explain.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Corn World: Teeth on the Cob.

Printing Genomes

Tue 07-07-2015

You've seen bound volumes of printouts of the human reference genome. But what if at the Genome Sciences Center we wanted to print everything we sequence today?

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Curiously, printing is 44 times as expensive as sequencing. (details)

Gene Volume Control

Thu 11-06-2015

I was commissioned by Scientific American to create an information graphic based on Figure 9 in the landmark Nature Integrative analysis of 111 reference human epigenomes paper.

The original figure details the relationships between more than 100 sequenced epigenomes and genetic traits, including disease like Crohn's and Alzheimer's. These relationships were shown as a heatmap in which the epigenome-trait cell depicted the P value associated with tissue-specific H3K4me1 epigenetic modification in regions of the genome associated with the trait.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Figure 9 from Integrative analysis of 111 reference human epigenomes (Nature (2015) 518 317–330). (details)

As much as I distrust network diagrams, in this case this was the right way to show the data. The network was meticulously laid out by hand to draw attention to the layered groups of diseases of traits.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Network diagram redesign of the heatmap for a select set of traits. Only relationships with –log P > 3.9 are displayed. Appears on Graphic Science page in June 2015 issue of Scientific American. (details)

This was my second information graphic for the Graphic Science page. Last year, I illustrated the extent of differences in the gene sequence of humans, Denisovans, chimps and gorillas.

Sampling distributions and the bootstrap

Thu 11-06-2015

The bootstrap is a computational method that simulates new sample from observed data. These simulated samples can be used to determine how estimates from replicate experiments might be distributed and answer questions about precision and bias.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Nature Methods Points of Significance column: Sampling distributions and the bootstrap. (read)

We discuss both parametric and non-parametric bootstrap. In the former, observed data are fit to a model and then new samples are drawn using the model. In the latter, no model assumption is made and simulated samples are drawn with replacement from the observed data.

Kulesa, A., Krzywinski, M., Blainey, P. & Altman, N (2015) Points of Significance: Sampling distributions and the bootstrap Nature Methods 12:477-478.

Background reading

Krzywinski, M. & Altman, N. (2013) Points of Significance: Importance of being uncertain. Nature Methods 10:809-810.

...more about the Points of Significance column