Martin Krzywinski / Genome Sciences Center / Martin Krzywinski / Genome Sciences Center / - contact me Martin Krzywinski / Genome Sciences Center / on Twitter Martin Krzywinski / Genome Sciences Center / - Lumondo Photography Martin Krzywinski / Genome Sciences Center / - Pi Art Martin Krzywinski / Genome Sciences Center / - Hilbertonians - Creatures on the Hilbert Curve
This love loves love. It's a strange love, strange love.Liz Fraserfind a way to lovemore quotes

visualization: beautiful

DNA on 10th — street art, wayfinding and font

communication + science

Nature Methods: Points of View

Martin Krzywinski @MKrzywinski
Points of View column in Nature Methods. (Points of View)

The first Points of View column was about color coding in the July 2010 issue of Nature Methods. In its 5 year history, the column has established a significant legacy— it is one of the most frequently accessed parts of Nature Methods. The community sees the value in clear and effective visual communication and acknowledges the need for a forum in which best practices in the field are presented practically and accessibly.


Bang Wong, in collaboration with visiting authors (Noam Shoresh, Nils Gehlenborg, Cydney Nielsen and Rikke Schmidt Kjærgaard), has penned 29 columns in the period of August 2010 to December 2012, covering broad topics such as salience, Gestalt principles, color, typography, negative space, layout, and data integration.


The announcement of the return of the column, together with its history and a description of me, the new author, are available at the Nature Methods methagora blog. Humor is kept by repeated reference to my now-dead-but-once-famous pet rat.

When it was A.C. Greyling's turn to speak at a debate in which Christopher Hitchens and Richard Dawkins already made their points, Greyling said

When one gets up to speak this late in a debate, one is a bit tempated to quote that Hungarian M.P. who after a long, long, long discussion in the parliament in Budapest stood up and said, "Everything has been said but not everybody said it yet." (watch on YouTube)

Indeed, this is quite how I feel after being offered to be the new author of Nature Methods Point of View column. Both Bang and Hitchens provide significant inspiration for me, so Greyling's words are particularly fitting.

To improve on the column is impossible. My challenge is to identify useful topics that have not yet been covered. I will be working closely with Nature Methods and Bang to ensure that the columns strike the right balance of topic, tone and timbre.

In 2013 the Points of View column spawned the Points of Significance column, which deals with statistics in biological science.

For the month of August 2013, the entire set of 35 columns is available for free.

2015 and beyond

The column continues to run, though no longer monthly.

A PDF eBook of the 38 Points of View articles published between August 2010 and February 2015 is now available at the Nature Shop for $7.99 under the title Visual strategies for biological data: the collected Points of View.


news + thoughts

Yearning for the Infinite — Aleph 2

Mon 18-11-2019

Discover Cantor's transfinite numbers through my music video for the Aleph 2 track of Max Cooper's Yearning for the Infinite (album page, event page).

Martin Krzywinski @MKrzywinski
Yearning for the Infinite, Max Cooper at the Barbican Hall, London. Track Aleph 2. Video by Martin Krzywinski. Photo by Michal Augustini. (more)

I discuss the math behind the video and the system I built to create the video.

Hidden Markov Models

Mon 18-11-2019

Everything we see hides another thing, we always want to see what is hidden by what we see.
—Rene Magritte

A Hidden Markov Model extends a Markov chain to have hidden states. Hidden states are used to model aspects of the system that cannot be directly observed and themselves form a Markov chain and each state may emit one or more observed values.

Hidden states in HMMs do not have to have meaning—they can be used to account for measurement errors, compress multi-modal observational data, or to detect unobservable events.

Martin Krzywinski @MKrzywinski
Nature Methods Points of Significance column: Hidden Markov Models. (read)

In this column, we extend the cell growth model from our Markov Chain column to include two hidden states: normal and sedentary.

We show how to calculate forward probabilities that can predict the most likely path through the HMM given an observed sequence.

Grewal, J., Krzywinski, M. & Altman, N. (2019) Points of significance: Hidden Markov Models. Nature Methods 16:795–796.

Background reading

Altman, N. & Krzywinski, M. (2019) Points of significance: Markov Chains. Nature Methods 16:663–664.

Hola Mundo Cover

Sat 21-09-2019

My cover design for Hola Mundo by Hannah Fry. Published by Blackie Books.

Martin Krzywinski @MKrzywinski
Hola Mundo by Hannah Fry. Cover design is based on my 2013 `\pi` day art. (read)

Curious how the design was created? Read the full details.

Markov Chains

Tue 30-07-2019

You can look back there to explain things,
but the explanation disappears.
You'll never find it there.
Things are not explained by the past.
They're explained by what happens now.
—Alan Watts

A Markov chain is a probabilistic model that is used to model how a system changes over time as a series of transitions between states. Each transition is assigned a probability that defines the chance of the system changing from one state to another.

Martin Krzywinski @MKrzywinski
Nature Methods Points of Significance column: Markov Chains. (read)

Together with the states, these transitions probabilities define a stochastic model with the Markov property: transition probabilities only depend on the current state—the future is independent of the past if the present is known.

Once the transition probabilities are defined in matrix form, it is easy to predict the distribution of future states of the system. We cover concepts of aperiodicity, irreducibility, limiting and stationary distributions and absorption.

This column is the first part of a series and pairs particularly well with Alan Watts and Blond:ish.

Grewal, J., Krzywinski, M. & Altman, N. (2019) Points of significance: Markov Chains. Nature Methods 16:663–664.

1-bit zoomable gigapixel maps of Moon, Solar System and Sky

Mon 22-07-2019

Places to go and nobody to see.

Exquisitely detailed maps of places on the Moon, comets and asteroids in the Solar System and stars, deep-sky objects and exoplanets in the northern and southern sky. All maps are zoomable.

Martin Krzywinski @MKrzywinski
3.6 gigapixel map of the near side of the Moon, annotated with 6,733. (details)
Martin Krzywinski @MKrzywinski
100 megapixel and 10 gigapixel map of the Solar System on 20 July 2019, annotated with 758k asteroids, 1.3k comets and all planets and satellites. (details)
Martin Krzywinski @MKrzywinski
100 megapixle and 10 gigapixel map of the Northern Celestial Hemisphere, annotated with 44 million stars, 74,000 deep-sky objects and 3,000 exoplanets. (details)
Martin Krzywinski @MKrzywinski
100 megapixle and 10 gigapixel map of the Southern Celestial Hemisphere, annotated with 69 million stars, 88,000 deep-sky objects and 1000 exoplanets. (details)