Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - contact me Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca on Twitter Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - Lumondo Photography Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - Pi Art Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - Hilbertonians - Creatures on the Hilbert Curve
Poetry is just the evidence of life. If your life is burning well, poetry is just the ashLeonard Cohenburn somethingmore quotes

In Silico Flurries: Computing a world of snow. Scientific American. 23 December 2017


data visualization + art

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
The BC Cancer Agency’s Personalized Oncogenomics Program (POG) is a clinical research initiative applying genomic sequencing to the diagnosis and treatment of patients with incurable cancers.

Art of the Personalized Oncogenomics Program

Nature uses only the longest threads to weave her patterns, so that each small piece of her fabric reveals the organization of the entire tapestry.
— Richard Feynman

A poet is, after all, a sort of scientist, but engaged in a qualitative science in which nothing is measurable. He lives with data that cannot be numbered, and his experiments can be done only once. The information in a poem is, by definition, not reproducible. He becomes an equivalent of scientist, in the act of examining and sorting the things popping in [to his head], finding the marks of remote similarity, points of distant relationship, tiny irregularities that indicate that this one is really the same as that one over there only more important. Gauging the fit, he can meticulously place pieces of the universe together, in geometric configurations that are as beautiful and balanced as crystals.
— Lewis Thomas (The Medusa and the Snail: More Notes of a Biology Watcher)

I've prepared posters in three popular size formats: 11" × 14", 50 cm × 50 cm and 50 cm × 70 cm.

All artwork is available in PDF and PNG format. Click on the button on the top-right of the image to download these files. All files include 1/8" bleed. For printing, use the PDFs.

The PNG bitmap is provided for convenience and rastered at 600 dpi with 1/8" bleed (75 pixel margin on all sides). For example, the 11" × 14" bitmap has width 11.25 × 600 = 6,750 and height 14.25 × 600 = 8,550.

An explanation of how these images were generated, along with a printable legend, is available in the Methods section.

11" × 14" posters

These posters are designed to fit a standard 11" × 14" frame.


 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
5 Years of Personalized Oncogenomics Project at Canada's Michael Smith Genome Sciences Centre. The poster shows 545 cancer cases. Cases ordered chronologically by case number. (zoom)

 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
5 Years of Personalized Oncogenomics Project at Canada's Michael Smith Genome Sciences Centre. The poster shows 545 cancer cases. Cases grouped by diagnosis (tissue type) and then by similarity within group. (zoom)

50 cm × 70 cm posters

These posters are fit to 50 cm × 70 cm and fit into inexpensive Strömby frames at IKEA.

The bigmap is 600 dpi (artboard 11,811 × 16,535 pixels) with 1/8" bleed (75 pixel margin on all sides).


 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
5 Years of Personalized Oncogenomics Project at Canada's Michael Smith Genome Sciences Centre. The poster shows 545 cancer cases. Cases ordered chronologically by case number. (zoom)

 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
5 Years of Personalized Oncogenomics Project at Canada's Michael Smith Genome Sciences Centre. The poster shows 545 cancer cases. Cases grouped by diagnosis (tissue type) and then by similarity within group. (zoom)

50 cm × 50 cm posters

These posters are fit to 50 cm × 50 cm and fit into inexpensive Strömby frames at IKEA.

You can print this poster to any square frame but keep in mind that if you shrink it down too much, the text may not be legible. At size, the text is 6.7 pt, which can be read comfortably. I would avoid printing the poster smaller than 30 cm × 30cm, which would have text of 4 pt in size.

The bigmap is 600 dpi (artboard 11,811 × 16,535 pixels) with 1/8" bleed (75 pixel margin on all sides).


 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
5 Years of Personalized Oncogenomics Project at Canada's Michael Smith Genome Sciences Centre. The poster shows 545 cancer cases. Cases ordered chronologically by case number. (zoom)

 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
5 Years of Personalized Oncogenomics Project at Canada's Michael Smith Genome Sciences Centre. The poster shows 545 cancer cases. Cases grouped by diagnosis (tissue type) and then by similarity within group. (zoom)

4" × 6" postcard

This is the standard postcard size. The bitmap is 600 dpi (artboard 2,400 × 3,600 pixels) with 1/8" bleed (75 pixel margin on all sides).


 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
5 Years of Personalized Oncogenomics Project at Canada's Michael Smith Genome Sciences Centre. The poster shows 545 cancer cases. (zoom)
VIEW ALL

news + thoughts

Oryza longistaminata genome cake

Mon 24-09-2018

Data visualization should be informative and, where possible, tasty.

Stefan Reuscher from Bioscience and Biotechnology Center at Nagoya University celebrates a publication with a Circos cake.

The cake shows an overview of a de-novo assembled genome of a wild rice species Oryza longistaminata.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Circos cake celebrating Reuscher et al. 2018 publication of the Oryza longistaminata genome.

Optimal experimental design

Tue 31-07-2018
Customize the experiment for the setting instead of adjusting the setting to fit a classical design.

The presence of constraints in experiments, such as sample size restrictions, awkward blocking or disallowed treatment combinations may make using classical designs very difficult or impossible.

Optimal design is a powerful, general purpose alternative for high quality, statistically grounded designs under nonstandard conditions.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Nature Methods Points of Significance column: Optimal experimental design. (read)

We discuss two types of optimal designs (D-optimal and I-optimal) and show how it can be applied to a scenario with sample size and blocking constraints.

Smucker, B., Krzywinski, M. & Altman, N. (2018) Points of significance: Optimal experimental design Nature Methods 15:599–600.

Background reading

Krzywinski, M., Altman, N. (2014) Points of significance: Two factor designs. Nature Methods 11:1187–1188.

Krzywinski, M. & Altman, N. (2014) Points of significance: Analysis of variance (ANOVA) and blocking. Nature Methods 11:699–700.

Krzywinski, M. & Altman, N. (2014) Points of significance: Designing comparative experiments. Nature Methods 11:597–598.

The Whole Earth Cataloguer

Mon 30-07-2018
All the living things.

An illustration of the Tree of Life, showing some of the key branches.

The tree is drawn as a DNA double helix, with bases colored to encode ribosomal RNA genes from various organisms on the tree.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
The circle of life. (read, zoom)

All living things on earth descended from a single organism called LUCA (last universal common ancestor) and inherited LUCA’s genetic code for basic biological functions, such as translating DNA and creating proteins. Constant genetic mutations shuffled and altered this inheritance and added new genetic material—a process that created the diversity of life we see today. The “tree of life” organizes all organisms based on the extent of shuffling and alteration between them. The full tree has millions of branches and every living organism has its own place at one of the leaves in the tree. The simplified tree shown here depicts all three kingdoms of life: bacteria, archaebacteria and eukaryota. For some organisms a grey bar shows when they first appeared in the tree in millions of years (Ma). The double helix winding around the tree encodes highly conserved ribosomal RNA genes from various organisms.

Johnson, H.L. (2018) The Whole Earth Cataloguer, Sactown, Jun/Jul, p. 89

Why we can't give up this odd way of typing

Mon 30-07-2018
All fingers report to home row.

An article about keyboard layouts and the history and persistence of QWERTY.

My Carpalx keyboard optimization software is mentioned along with my World's Most Difficult Layout: TNWMLC. True typing hell.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
TNWMLC requires seriously flexible digits. It’s 87% more difficult than using a standard Qwerty keyboard, according to Martin Krzywinski, who created it (Credit: Ben Nelms). (read)

McDonald, T. (2018) Why we can't give up this odd way of typing, BBC, 25 May 2018.

Molecular Case Studies Cover

Fri 06-07-2018

The theme of the April issue of Molecular Case Studies is precision oncogenomics. We have three papers in the issue based on work done in our Personalized Oncogenomics Program (POG).

The covers of Molecular Case Studies typically show microscopy images, with some shown in a more abstract fashion. There's also the occasional Circos plot.

I've previously taken a more fine-art approach to cover design, such for those of Nature, Genome Research and Trends in Genetics. I've used microscopy images to create a cover for PNAS—the one that made biology look like astrophysics—and thought that this is kind of material I'd start with for the MCS cover.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Cover design for Apr 2018 issue of Molecular Case Studies. (details)

Happy 2018 `\tau` Day—Art for everyone

Wed 27-06-2018
Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
You know what day it is. (details)