Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - contact me Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca on Twitter Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - Lumondo Photography Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - Pi Art Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - Hilbertonians - Creatures on the Hilbert Curve
I'm not real and I deny I won't heal unless I cry.Cocteau Twinslet it gomore quotes

In Silico Flurries: Computing a world of snow. Scientific American. 23 December 2017


data visualization + art

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
The BC Cancer Agency’s Personalized Oncogenomics Program (POG) is a clinical research initiative applying genomic sequencing to the diagnosis and treatment of patients with incurable cancers.

Art of the Personalized Oncogenomics Program

Nature uses only the longest threads to weave her patterns, so that each small piece of her fabric reveals the organization of the entire tapestry.
— Richard Feynman

How often people speak of art and science as though they were two entirely different things, with no interconnection. An artist is emotional, they think, and uses only his intuition; he sees all at once and has no need of reason. A scientist is cold, they think, and uses only his reason; he argues carefully step by step, and needs no imagination. That is all wrong. The true artist is quite rational as well as imaginative and knows what he is doing; if he does not, his art suffers. The true scientist is quite imaginative as well as rational, and sometimes leaps to solutions where reason can follow only slowly; if he does not, his science suffers.
— Isaac Asimov, The Roving Mind (Ch 25)

Desktops are available for various display aspect ratios.

For the 4k 16:9 desktop, I've included a few remixes of the original art.

An explanation of how these images were generated, along with a printable legend, is available in the Methods section.

1280 × 960 (4:3)


 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
png
5 Years of Personalized Oncogenomics Project at Canada's Michael Smith Genome Sciences Centre. The poster shows 545 cancer cases. Cases ordered chronologically by case number. (zoom)

 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
png
5 Years of Personalized Oncogenomics Project at Canada's Michael Smith Genome Sciences Centre. The poster shows 545 cancer cases. Cases grouped by diagnosis (tissue type) and then by similarity within group. (zoom)

1920 × 1080 (16:9)


 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
png
5 Years of Personalized Oncogenomics Project at Canada's Michael Smith Genome Sciences Centre. The poster shows 545 cancer cases. Cases ordered chronologically by case number. (zoom)

 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
png
5 Years of Personalized Oncogenomics Project at Canada's Michael Smith Genome Sciences Centre. The poster shows 545 cancer cases. Cases grouped by diagnosis (tissue type) and then by similarity within group. (zoom)

1920 × 1200 (16:10)


 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
png
5 Years of Personalized Oncogenomics Project at Canada's Michael Smith Genome Sciences Centre. The poster shows 545 cancer cases. Cases ordered chronologically by case number. (zoom)

 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
png
5 Years of Personalized Oncogenomics Project at Canada's Michael Smith Genome Sciences Centre. The poster shows 545 cancer cases. Cases grouped by diagnosis (tissue type) and then by similarity within group. (zoom)

3840 × 2160 (4k 16:9)


 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
png
5 Years of Personalized Oncogenomics Project at Canada's Michael Smith Genome Sciences Centre. The poster shows 545 cancer cases. Cases ordered chronologically by case number. (zoom)

 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
png
5 Years of Personalized Oncogenomics Project at Canada's Michael Smith Genome Sciences Centre. The poster shows 545 cancer cases. Cases grouped by diagnosis (tissue type) and then by similarity within group. (zoom)

remixes


 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
png
5 Years of Personalized Oncogenomics Project at Canada's Michael Smith Genome Sciences Centre. The poster shows 545 cancer cases. Cases ordered chronologically by case number. (zoom)

 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
png
5 Years of Personalized Oncogenomics Project at Canada's Michael Smith Genome Sciences Centre. The poster shows 545 cancer cases. Cases ordered chronologically by case number. (zoom)

 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
png
5 Years of Personalized Oncogenomics Project at Canada's Michael Smith Genome Sciences Centre. The poster shows 545 cancer cases. Cases ordered chronologically by case number. (zoom)

 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
png
5 Years of Personalized Oncogenomics Project at Canada's Michael Smith Genome Sciences Centre. The poster shows 545 cancer cases. Cases ordered chronologically by case number. (zoom)

 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
png
5 Years of Personalized Oncogenomics Project at Canada's Michael Smith Genome Sciences Centre. The poster shows 545 cancer cases. Cases ordered chronologically by case number. (zoom)
VIEW ALL

news + thoughts

Machine learning: supervised methods (SVM & kNN)

Thu 18-01-2018
Supervised learning algorithms extract general principles from observed examples guided by a specific prediction objective.

We examine two very common supervised machine learning methods: linear support vector machines (SVM) and k-nearest neighbors (kNN).

SVM is often less computationally demanding than kNN and is easier to interpret, but it can identify only a limited set of patterns. On the other hand, kNN can find very complex patterns, but its output is more challenging to interpret.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Nature Methods Points of Significance column: Machine learning: supervised methods (SVM & kNN). (read)

We illustrate SVM using a data set in which points fall into two categories, which are separated in SVM by a straight line "margin". SVM can be tuned using a parameter that influences the width and location of the margin, permitting points to fall within the margin or on the wrong side of the margin. We then show how kNN relaxes explicit boundary definitions, such as the straight line in SVM, and how kNN too can be tuned to create more robust classification.

Bzdok, D., Krzywinski, M. & Altman, N. (2018) Points of Significance: Machine learning: a primer. Nature Methods 15:5–6.

Background reading

Bzdok, D., Krzywinski, M. & Altman, N. (2017) Points of Significance: Machine learning: a primer. Nature Methods 14:1119–1120.

...more about the Points of Significance column

Human Versus Machine

Tue 16-01-2018
Balancing subjective design with objective optimization.

In a Nature graphics blog article, I present my process behind designing the stark black-and-white Nature 10 cover.

Nature 10, 18 December 2017

Machine learning: a primer

Thu 18-01-2018
Machine learning extracts patterns from data without explicit instructions.

In this primer, we focus on essential ML principles— a modeling strategy to let the data speak for themselves, to the extent possible.

The benefits of ML arise from its use of a large number of tuning parameters or weights, which control the algorithm’s complexity and are estimated from the data using numerical optimization. Often ML algorithms are motivated by heuristics such as models of interacting neurons or natural evolution—even if the underlying mechanism of the biological system being studied is substantially different. The utility of ML algorithms is typically assessed empirically by how well extracted patterns generalize to new observations.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Nature Methods Points of Significance column: Machine learning: a primer. (read)

We present a data scenario in which we fit to a model with 5 predictors using polynomials and show what to expect from ML when noise and sample size vary. We also demonstrate the consequences of excluding an important predictor or including a spurious one.

Bzdok, D., Krzywinski, M. & Altman, N. (2017) Points of Significance: Machine learning: a primer. Nature Methods 14:1119–1120.

...more about the Points of Significance column

Snowflake simulation

Tue 16-01-2018
Symmetric, beautiful and unique.

Just in time for the season, I've simulated a snow-pile of snowflakes based on the Gravner-Griffeath model.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
A few of the beautiful snowflakes generated by the Gravner-Griffeath model. (explore)

The work is described as a wintertime tale in In Silico Flurries: Computing a world of snow and co-authored with Jake Lever in the Scientific American SA Blog.

Gravner, J. & Griffeath, D. (2007) Modeling Snow Crystal Growth II: A mesoscopic lattice map with plausible dynamics.

Genes that make us sick

Wed 22-11-2017
Where disease hides in the genome.

My illustration of the location of genes in the human genome that are implicated in disease appears in The Objects that Power the Global Economy, a book by Quartz.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
The location of genes implicated in disease in the human genome, shown here as a spiral. (more...)

Ensemble methods: Bagging and random forests

Wed 22-11-2017
Many heads are better than one.

We introduce two common ensemble methods: bagging and random forests. Both of these methods repeat a statistical analysis on a bootstrap sample to improve the accuracy of the predictor. Our column shows these methods as applied to Classification and Regression Trees.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Nature Methods Points of Significance column: Ensemble methods: Bagging and random forests. (read)

For example, we can sample the space of values more finely when using bagging with regression trees because each sample has potentially different boundaries at which the tree splits.

Random forests generate a large number of trees by not only generating bootstrap samples but also randomly choosing which predictor variables are considered at each split in the tree.

Krzywinski, M. & Altman, N. (2017) Points of Significance: Ensemble methods: bagging and random forests. Nature Methods 14:933–934.

Background reading

Krzywinski, M. & Altman, N. (2017) Points of Significance: Classification and regression trees. Nature Methods 14:757–758.

...more about the Points of Significance column