Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - contact me Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca on Twitter Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - Lumondo Photography Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - Pi Art Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - Hilbertonians - Creatures on the Hilbert Curve
Safe, fallen down this way, I want to be just what I am.Cocteau Twinssafe at lastmore quotes

hitchens: fun


In Silico Flurries: Computing a world of snow. Scientific American. 23 December 2017


visualization + design

Christopher Hitchens—Out of Letters

ASCII Art

The images shown here were created as part of my ASCII Art project, which extends ASCII art to include

  • proportionally spaced fonts
  • a variety of font weights in a single image
  • both tone and structure of the image to select characters
  • fixed strings to render an image in legible text

Applying the code to images of Hitchens was motivated by my own deep love of Hitchens and a typographic portrait of Christopher Hitchens, created out of Gill Sans letters by Miles Chic at Capilano University.

This adds to my growing shrines to Hitchens, including Merry Hitchmas! and hitchslap t-shirts.

Christopher Hitchens in Letters and Words

All images are generated using Gotham, with up to 8 weights (Extra Light to Ultra). Each image includes size and characters used for the image. I give the absolute type size, though only useful to know in relative terms to the size of the image and other images drawn with the same method. The color of text in each layer is the same—black— but font weight may vary.

Some images are generated using more than one layer of ASCII. In some cases the characters used in each layer are different.

basic ascii

As the font size is reduced, greater detail and contrast can be achieved.

Christopher Hitchens - ASCII Art / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Christopher Hitchens ASCII Art. method: Gotham font, 8 weights, 43pt set: . x 8 : * @ - \ | _space_ / (source from Christian Witkin/Twelve/Grand Central Publishing) (zoom, source)
Christopher Hitchens - ASCII Art / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Christopher Hitchens ASCII Art. method: Gotham font, 8 weights, 29pt set: . x 8 : * @ - \ | _space_ / (source from Christian Witkin/Twelve/Grand Central Publishing) (zoom, source)
Christopher Hitchens - ASCII Art / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Christopher Hitchens ASCII Art. method: Gotham font, 8 weights, 17pt set: . x 8 : * @ - \ | _space_ / (source from Christian Witkin/Twelve/Grand Central Publishing) (zoom, source)
Christopher Hitchens - ASCII Art / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Christopher Hitchens ASCII Art. method: Gotham font, 8 weights, 11pt set: . x 8 : * @ - \ | _space_ / (source from Christian Witkin/Twelve/Grand Central Publishing) (zoom, source)

By setting the image with a fixed string, such as a short quote or longer body of text, detail is lost but the ASCII representation takes on more meaning.

Christopher Hitchens - ASCII Art / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Christopher Hitchens ASCII Art. method: Gotham font, 8 weights, 11pt set: godisnotgreat (source from Christian Witkin/Twelve/Grand Central Publishing) (zoom, source)
Christopher Hitchens - ASCII Art / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Christopher Hitchens ASCII Art. method: Gotham font, 8 weights, 29pt set: godisnotgreat (source from Christian Witkin/Twelve/Grand Central Publishing) (zoom, source)
Christopher Hitchens - ASCII Art / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Christopher Hitchens ASCII Art. method: Gotham font, 8 weights, 11pt set: Hitchslap 11 (source from Christian Witkin/Twelve/Grand Central Publishing) (zoom, source)
Christopher Hitchens - ASCII Art / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Christopher Hitchens ASCII Art. method: Gotham font, 8 weights, 5 layers (11pt -6deg, 17pt 6deg, 29pt -3deg, 43pt 3deg, 59pt 0deg) set: godisnotgreat (source from Christian Witkin/Twelve/Grand Central Publishing) (zoom, source)
Christopher Hitchens - ASCII Art / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Christopher Hitchens ASCII Art. method: Gotham font, 8 weights, 7pt set: . x 8 : * @ - \ | _space_ / (source from Gasper Tringale) (zoom, source)

multi-layered ascii art

Images take on detail when multiple rotated layers of text is used. Each of the images below is composed of more than one layer, starting with a 2-layer image which uses the uppercase alphabet at 0 and 90 degrees.

Christopher Hitchens - ASCII Art / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Christopher Hitchens ASCII Art. method: Gotham font, 8 weights, 2 layers (0deg, 90deg) set: A-Z (source from HBO) (zoom, source)

Meaning can be added to the image by using different text in each layer. In the examples below, I set the same image using the pair "Godisnotgreat" (at 0 degrees) and "religionpoisonseverything" (at 90 degrees). In the second example, I use the unlikely combination of "Jesus" and "Mohammad"—inspired by Jesus and Mo.

Christopher Hitchens - ASCII Art / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Christopher Hitchens ASCII Art. method: Gotham font, 8 weights, 2 layers set: Godisnotgreat. 0deg Relionpoisonseverything. 90deg (source from HBO) (zoom, source)
Christopher Hitchens - ASCII Art / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Christopher Hitchens ASCII Art. method: Gotham font, 8 weights, 2 layers set: Jesus 0deg Mohammad 90deg (source from HBO) (zoom, source)

When rotated layers contain punctuation, very high level of detail can be achieved.

Christopher Hitchens - ASCII Art / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Christopher Hitchens ASCII Art. method: Gotham font, 8 weights, 2 layers set: . : - + * _space_ 0deg / 90deg (zoom, source)

The image below is made out of layers that contain only forward (/) and back (\) slashes.

Christopher Hitchens - ASCII Art / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Christopher Hitchens ASCII Art. method: Gotham font, 8 weights, 2 layers set: \ / (zoom, source)

The image below is made using only the period character in three layers rotated at -45, 0 and 45 degrees. Although the image looks like a pixelated version of the original—it is more than that. It is a typeset representation that uses 8 weights of Gotham. Character spacing between periods is informed by font metrics.

Christopher Hitchens - ASCII Art / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Christopher Hitchens ASCII Art. method: Gotham font, 8 weights, 2 layers set: . (zoom, source)
Christopher Hitchens - ASCII Art / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Christopher Hitchens ASCII Art. method: Gotham font, 8 weights, 2 layers set: 8 X x | ^ : . - = + ' " @ \ / | * ~ , # (source from The Australian) (zoom, source)

hitchens at the podium

The three images below show the difference between using a variety of punctuation characters and setting an image using a block of text. The first image uses "8 X x" and common punctuation.

Christopher Hitchens - ASCII Art / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Christopher Hitchens ASCII Art. method: Gotham font, 8 weights, 11pt set: 8 X x | ^ : . - = + ' " @ \ / | * ~ , # (zoom, source)

I use hitchslap 9 for the first image below, and all the hitchslaps for the second image. When setting an image in using a block of text, the choice of character at any position is fixed and only the font weight is allowed to vary. When the text is relatively short (e.g. hitchslap 9 is 544 characters and is repeated 50 times in the image), rivers of space appear in the image.

Christopher Hitchens - ASCII Art / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Christopher Hitchens ASCII Art. method: Gotham font, 8 weights, 11pt set: Hitchslap 9 (zoom, source)
Christopher Hitchens - ASCII Art / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Christopher Hitchens ASCII Art. method: Gotham font, 8 weights, 11pt set: all Hitchslaps (zoom, source)

In both cases, the image is very recognizable.

recursive ascii art

When an image of text is set with the text itself, you have recursive ASCII art. Below is hitchslap 2, set with itself. In the image, the font is Gotham and the text used to asciify the image is also Gotham.

It makes ordinary moral people, compels them, forces them, in some cases orders them do disgusting wicked unforgivable things. There's no expiation for the generations of misery and suffering that religion has inflicted in this way and continues to inflict. And I still haven't heard enough apology for it. — Christopher Hitchens

The quote is 307 characters long and is repeated 391 times in the image.

Christopher Hitchens - ASCII Art / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Christopher Hitchens ASCII Art. method: Gotham font, 8 weights, 11pt set: Hitchslap 2 (source from hitchslap 2) (zoom, source)

In principle, the process of asciifying text with text can be repeated, by using the asciified image as input for asciification with progressively smaller text.

VIEW ALL

news + thoughts

Curse(s) of dimensionality

Tue 05-06-2018
There is such a thing as too much of a good thing.

We discuss the many ways in which analysis can be confounded when data has a large number of dimensions (variables). Collectively, these are called the "curses of dimensionality".

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Nature Methods Points of Significance column: Curse(s) of dimensionality. (read)

Some of these are unintuitive, such as the fact that the volume of the hypersphere increases and then shrinks beyond about 7 dimensions, while the volume of the hypercube always increases. This means that high-dimensional space is "mostly corners" and the distance between points increases greatly with dimension. This has consequences on correlation and classification.

Altman, N. & Krzywinski, M. (2018) Points of significance: Curse(s) of dimensionality Nature Methods 15:399–400.

Statistics vs Machine Learning

Tue 03-04-2018
We conclude our series on Machine Learning with a comparison of two approaches: classical statistical inference and machine learning. The boundary between them is subject to debate, but important generalizations can be made.

Inference creates a mathematical model of the datageneration process to formalize understanding or test a hypothesis about how the system behaves. Prediction aims at forecasting unobserved outcomes or future behavior. Typically we want to do both and know how biological processes work and what will happen next. Inference and ML are complementary in pointing us to biologically meaningful conclusions.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Nature Methods Points of Significance column: Statistics vs machine learning. (read)

Statistics asks us to choose a model that incorporates our knowledge of the system, and ML requires us to choose a predictive algorithm by relying on its empirical capabilities. Justification for an inference model typically rests on whether we feel it adequately captures the essence of the system. The choice of pattern-learning algorithms often depends on measures of past performance in similar scenarios.

Bzdok, D., Krzywinski, M. & Altman, N. (2018) Points of Significance: Statistics vs machine learning. Nature Methods 15:233–234.

Background reading

Bzdok, D., Krzywinski, M. & Altman, N. (2017) Points of Significance: Machine learning: a primer. Nature Methods 14:1119–1120.

Bzdok, D., Krzywinski, M. & Altman, N. (2017) Points of Significance: Machine learning: supervised methods. Nature Methods 15:5–6.

...more about the Points of Significance column

Happy 2018 `\pi` Day—Boonies, burbs and boutiques of `\pi`

Wed 14-03-2018

Celebrate `\pi` Day (March 14th) and go to brand new places. Together with Jake Lever, this year we shrink the world and play with road maps.

Streets are seamlessly streets from across the world. Finally, a halva shop on the same block!

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
A great 10 km run loop between Istanbul, Copenhagen, San Francisco and Dublin. Stop off for halva, smørrebrød, espresso and a Guinness on the way. (details)

Intriguing and personal patterns of urban development for each city appear in the Boonies, Burbs and Boutiques series.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
In the Boonies, Burbs and Boutiques of `\pi` we draw progressively denser patches using the digit sequence 159 to inform density. (details)

No color—just lines. Lines from Marrakesh, Prague, Istanbul, Nice and other destinations for the mind and the heart.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Roads from cities rearranged according to the digits of `\pi`. (details)

The art is featured in the Pi City on the Scientific American SA Visual blog.

Check out art from previous years: 2013 `\pi` Day and 2014 `\pi` Day, 2015 `\pi` Day, 2016 `\pi` Day and 2017 `\pi` Day.

Machine learning: supervised methods (SVM & kNN)

Thu 18-01-2018
Supervised learning algorithms extract general principles from observed examples guided by a specific prediction objective.

We examine two very common supervised machine learning methods: linear support vector machines (SVM) and k-nearest neighbors (kNN).

SVM is often less computationally demanding than kNN and is easier to interpret, but it can identify only a limited set of patterns. On the other hand, kNN can find very complex patterns, but its output is more challenging to interpret.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Nature Methods Points of Significance column: Machine learning: supervised methods (SVM & kNN). (read)

We illustrate SVM using a data set in which points fall into two categories, which are separated in SVM by a straight line "margin". SVM can be tuned using a parameter that influences the width and location of the margin, permitting points to fall within the margin or on the wrong side of the margin. We then show how kNN relaxes explicit boundary definitions, such as the straight line in SVM, and how kNN too can be tuned to create more robust classification.

Bzdok, D., Krzywinski, M. & Altman, N. (2018) Points of Significance: Machine learning: a primer. Nature Methods 15:5–6.

Background reading

Bzdok, D., Krzywinski, M. & Altman, N. (2017) Points of Significance: Machine learning: a primer. Nature Methods 14:1119–1120.

...more about the Points of Significance column