listen; there's a hell of a good universe next door: let's go.
•
• go there

`#hitchens`

The images shown here were created as part of my ASCII Art project, which extends ASCII art to include

- proportionally spaced fonts
- a variety of font weights in a single image
- both tone and structure of the image to select characters
- fixed strings to render an image in legible text

Applying the code to images of Hitchens was motivated by my own deep love of Hitchens and a typographic portrait of Christopher Hitchens, created out of Gill Sans letters by Miles Chic at Capilano University.

This adds to my growing shrines to Hitchens, including Merry Hitchmas! and hitchslap t-shirts.

All images are generated using Gotham, with up to 8 weights (Extra Light to Ultra). Each image includes size and characters used for the image. I give the absolute type size, though only useful to know in relative terms to the size of the image and other images drawn with the same method. The color of text in each layer is the same—black— but font weight may vary.

Some images are generated using more than one layer of ASCII. In some cases the characters used in each layer are different.

As the font size is reduced, greater detail and contrast can be achieved.

By setting the image with a fixed string, such as a short quote or longer body of text, detail is lost but the ASCII representation takes on more meaning.

Images take on detail when multiple rotated layers of text is used. Each of the images below is composed of more than one layer, starting with a 2-layer image which uses the uppercase alphabet at 0 and 90 degrees.

Meaning can be added to the image by using different text in each layer. In the examples below, I set the same image using the pair "Godisnotgreat" (at 0 degrees) and "religionpoisonseverything" (at 90 degrees). In the second example, I use the unlikely combination of "Jesus" and "Mohammad"—inspired by Jesus and Mo.

When rotated layers contain punctuation, very high level of detail can be achieved.

The image below is made out of layers that contain only forward (/) and back (\) slashes.

The image below is made using only the period character in three layers rotated at -45, 0 and 45 degrees. Although the image looks like a pixelated version of the original—it is more than that. It is a typeset representation that uses 8 weights of Gotham. Character spacing between periods is informed by font metrics.

The three images below show the difference between using a variety of punctuation characters and setting an image using a block of text. The first image uses "8 X x" and common punctuation.

I use hitchslap 9 for the first image below, and all the hitchslaps for the second image. When setting an image in using a block of text, the choice of character at any position is fixed and only the font weight is allowed to vary. When the text is relatively short (e.g. hitchslap 9 is 544 characters and is repeated 50 times in the image), rivers of space appear in the image.

In both cases, the image is very recognizable.

When an image of text is set with the text itself, you have recursive ASCII art. Below is hitchslap 2, set with itself. In the image, the font is Gotham and the text used to asciify the image is also Gotham.

It makes ordinary moral people, compels them, forces them, in some cases orders them do disgusting wicked unforgivable things. There's no expiation for the generations of misery and suffering that religion has inflicted in this way and continues to inflict. And I still haven't heard enough apology for it. — Christopher Hitchens

The quote is 307 characters long and is repeated 391 times in the image.

In principle, the process of asciifying text with text can be repeated, by using the asciified image as input for asciification with progressively smaller text.

Building on last month's column about Bayes' Theorem, we introduce Bayesian inference and contrast it to frequentist inference.

Given a hypothesis and a model, the frequentist calculates the probability of different data generated by the model, *P*(data|model). When this probability to obtain the observed data from the model is small (e.g. `alpha` = 0.05), the frequentist rejects the hypothesis.

In contrast, the Bayesian makes direct probability statements about the model by calculating P(model|data). In other words, given the observed data, the probability that the model is correct. With this approach it is possible to relate the probability of different models to identify one that is most compatible with the data.

The Bayesian approach is actually more intuitive. From the frequentist point of view, the probability used to assess the veracity of a hypothesis, P(data|model), commonly referred to as the *P* value, does not help us determine the probability that the model is correct. In fact, the *P* value is commonly misinterpreted as the probability that the hypothesis is right. This is the so-called "prosecutor's fallacy", which confuses the two conditional probabilities *P*(data|model) for *P*(model|data). It is the latter quantity that is more directly useful and calculated by the Bayesian.

Puga, J.L, Krzywinski, M. & Altman, N. (2015) Points of Significance: Bayes' Theorem *Nature Methods* **12**:277-278.

Puga, J.L, Krzywinski, M. & Altman, N. (2015) Points of Significance: Bayes' Theorem *Nature Methods* **12**:277-278.

In our first column on Bayesian statistics, we introduce conditional probabilities and Bayes' theorem

*P*(B|A) = *P*(A|B) × *P*(B) / *P*(A)

This relationship between conditional probabilities *P*(B|A) and *P*(A|B) is central in Bayesian statistics. We illustrate how Bayes' theorem can be used to quickly calculate useful probabilities that are more difficult to conceptualize within a frequentist framework.

Using Bayes' theorem, we can incorporate our beliefs and prior experience about a system and update it when data are collected.

Puga, J.L, Krzywinski, M. & Altman, N. (2015) Points of Significance: Bayes' Theorem *Nature Methods* **12**:277-278.

Oldford, R.W. & Cherry, W.H. Picturing probability: the poverty of Venn diagrams, the richness of eikosograms. (University of Waterloo, 2006)

Celebrate `pi` Day (March 14th) with splitting its digit endlessly. This year I use a treemap approach to encode the digits in the style of Piet Mondrian.

The art has been featured in Ana Swanson's Wonkblog article at the Washington Post—10 Stunning Images Show The Beauty Hidden in `pi`.

I also have art from 2013 `pi` Day and 2014 `pi` Day.

The split plot design originated in agriculture, where applying some factors on a small scale is more difficult than others. For example, it's harder to cost-effectively irrigate a small piece of land than a large one. These differences are also present in biological experiments. For example, temperature and housing conditions are easier to vary for groups of animals than for individuals.

The split plot design is an expansion on the concept of blocking—all split plot designs include at least one randomized complete block design. The split plot design is also useful for cases where one wants to increase the sensitivity in one factor (sub-plot) more than another (whole plot).

Altman, N. & Krzywinski, M. (2015) Points of Significance: Split Plot Design *Nature Methods* **12**:165-166.

1. Krzywinski, M. & Altman, N. (2014) Points of Significance: Designing Comparative Experiments *Nature Methods* **11**:597-598.

2. Krzywinski, M. & Altman, N. (2014) Points of Significance: Analysis of variance (ANOVA) and blocking *Nature Methods* **11**:699-700.

3. Blainey, P., Krzywinski, M. & Altman, N. (2014) Points of Significance: Replication *Nature Methods* **11**:879-880.