Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - contact me Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca on Twitter Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - Lumondo Photography Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - Pi Art Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - Hilbertonians - Creatures on the Hilbert Curve
And she looks like the moon. So close and yet, so far.Future Islandsaim highmore quotes

In Silico Flurries: Computing a world of snow. Scientific American. 23 December 2017


data visualization + art

Genes that make us sick

It is said that for money you can have everything, but you cannot. You can buy food, but not appetite; medicine, but not health; knowledge, but not wisdom; glitter, but not beauty; fun, but not joy; acquaintances, but not friends; servants, but not faithfulness; leisure, but not peace. You can have the husk of everything for money, but not the kernel.
— Arne Garborg

I have recently had the opportunity to contribute to The Objects that Power the Global Economy, a book by Quartz.

The book is about objects that have impact on our world and our lives. "Each chapter of this book examines an object that is driving radical change in the global economy: how we communicate, what we eat, the way we spend our money. The stories are told through global reporting, original photography and illustration by award-winning artists, contributions from business visionaries, data visualization, and interactive features." (Quartz).

where disease hides in the genome

My illustration is of the human genome with a focus on the genes that have been implicated in disease.

We have about 30,000 genes and about half of these play some role in disease.

You can peruse what we know about the connection between genetics and illness at the Online Mendelean Inheritance of Man database. For example, a cursory search for "cancer" results in over 3,500 entries.

It's important to realize that these aren't genes that cause disease—its misregulation and mutations in them that are associated with disease (causality is complicated).

the visualization

The illustration shows the genome as a single line, wound in an Archimedean spiral. Chromosomes 1–22 are shown binned into about 10,000 regions along the spiral. Regions that have genes associated with disease are marked with dots—the size of the dot shows how many such genes are found. Each region corresponds to about 286,000 bases.

We see that in about 73% of the 286 kb regions, there are no genes. In about 18% we see a single gene and in roughly 10% two genes or more.

  regions  genes
    7,321  0
    1,812  1
      556  2
      221  3
       85  4
       93  5+

Winding the genome up in a spiral creates a compact representation. Squishing a line onto a page can be tricky.

Luckily, space filling curves like the Hilbert curve are very efficient at doing this. I've previously shown the genome along a Hilbert curve for a Scientific American Graphic Science page.

the artwork

I show several versions of the illustrations below. In the book, the image is printed on a black background.


 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
The human genome is shown as a spiral. Starting at the top with chromosome 1 and proceeding clockwise, each of the 10,087 dots corresponds to 286,000 bases, colored by chromosome. Within each dot, the number of genes in that region implicated in disease is shown by the size of the black circle. Chromosomes X and Y are not shown. (zoom)

 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
The human genome is shown as a spiral. Starting at the top with chromosome 1 and proceeding clockwise, each of the 10,087 dots corresponds to 286,000 bases, colored by chromosome. Within each dot, the number of genes in that region implicated in disease is shown by the size of the black circle. Chromosomes X and Y are not shown. (zoom)

 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
The human genome is shown as a spiral, starting at the top with chromosome 1 and proceeding clockwise. The spiral is formed by 10,087 segments that correspond to 286,000 bases each. Segments that contain genes implicated in disease are indicated by dots, sized by the number of genes. Chromosomes X and Y are not shown. (zoom)

 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
The human genome is shown as a spiral, starting at the top with chromosome 1 and proceeding clockwise. The spiral is formed by 10,087 segments that correspond to 286,000 bases each. Segments that contain genes implicated in disease are indicated by dots, sized by the number of genes. Chromosomes X and Y are not shown. (zoom)

 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
The human genome is shown as a spiral, starting at the top with chromosome 1 and proceeding clockwise. The spiral is formed by 10,087 segments that correspond to 286,000 bases each. Segments that contain genes implicated in disease are indicated by dots, sized by the number of genes. Chromosomes X and Y are not shown. (zoom)
VIEW ALL

news + thoughts

Molecular Case Studies Cover

Fri 06-07-2018

The theme of the April issue of Molecular Case Studies is precision oncogenomics. We have three papers in the issue based on work done in our Personalized Oncogenomics Program (POG).

The covers of Molecular Case Studies typically show microscopy images, with some shown in a more abstract fashion. There's also the occasional Circos plot.

I've previously taken a more fine-art approach to cover design, such for those of Nature, Genome Research and Trends in Genetics. I've used microscopy images to create a cover for PNAS—the one that made biology look like astrophysics—and thought that this is kind of material I'd start with for the MCS cover.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Cover design for Apr 2018 issue of Molecular Case Studies. (details)

Happy 2018 `\tau` Day—Art for everyone

Wed 27-06-2018
Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
You know what day it is. (details)

Universe Superclusters and Voids

Mon 25-06-2018

A map of the nearby superclusters and voids in the Unvierse.

By "nearby" I mean within 6,000 million light-years.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
The Universe — Superclustesr and Voids. The two supergalactic hemispheres showing Abell clusters, superclusters and voids within a distance of 6,000 million light-years from the Milky Way. (details)

Datavis for your feet—the 178.75 lb socks

Sat 23-06-2018

In the past, I've been tangentially involved in fashion design. I've also been more directly involved in fashion photography.

It was now time to design my first ... pair of socks.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Some datavis for your feet: the 178.75 lb socks. (get some)

In collaboration with Flux Socks, the design features the colors and relative thicknesses of Rogue olympic weightlifting plates. The first four plates in the stack are the 55, 45, 35, and 25 competition plates. The top 4 plates are the 10, 5, 2.5 and 1.25 lb change plates.

The perceived weight of each sock is 178.75 lb and 357.5 lb for the pair.

The actual weight is much less.

Genes Behind Psychiatric Disorders

Sun 24-06-2018

Find patterns behind gene expression and disease.

Expression, correlation and network module membership of 11,000+ genes and 5 psychiatric disorders in about 6" x 7" on a single page.

Design tip: Stay calm.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
An analysis of dust reveals how the presence of men, women, dogs and cats affects the variety of bacteria in a household. Appears on Graphic Science page in December 2015 issue of Scientific American.

More of my American Scientific Graphic Science designs

Gandal M.J. et al. Shared Molecular Neuropathology Across Major Psychiatric Disorders Parallels Polygenic Overlap Science 359 693–697 (2018)

Curse(s) of dimensionality

Tue 05-06-2018
There is such a thing as too much of a good thing.

We discuss the many ways in which analysis can be confounded when data has a large number of dimensions (variables). Collectively, these are called the "curses of dimensionality".

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Nature Methods Points of Significance column: Curse(s) of dimensionality. (read)

Some of these are unintuitive, such as the fact that the volume of the hypersphere increases and then shrinks beyond about 7 dimensions, while the volume of the hypercube always increases. This means that high-dimensional space is "mostly corners" and the distance between points increases greatly with dimension. This has consequences on correlation and classification.

Altman, N. & Krzywinski, M. (2018) Points of significance: Curse(s) of dimensionality Nature Methods 15:399–400.