Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - contact me Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca on Twitter Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - Lumondo Photography Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - Pi Art Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - Hilbertonians - Creatures on the Hilbert Curve
Love itself became the object of her love.Jonathan Safran Foercount sadnessesmore quotes

information: beautiful


EMBO Practical Course: Bioinformatics and Genome Analysis, 5–17 June 2017.


fun + amusement

The Ptolemaic Clock — A Proposal

the standard clock

Consider the lowly wall clock. It's practical and generally tells the correct time. It's the same clock everywhere and after a while it gets boring pretty quickly—maybe now?

Non-standard clock with rotating bezel. / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
In a standard clock, the bezel is fixed and the hands rotate.

In the regular clock the face bezels stay in place and the hands move. Why am I telling you this? Well, maybe you see where I'm going.

the Ptolemaic Clock

Who says it's the hands that have to rotate? Instead of rotating hands and a stationary bezel, consider the clock with stationary hands rotating bezels.

Non-standard clock with rotating bezel. / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
In the Ptolemaic clock, the hands stay in place while independent minute and hour hand bezels rotate to simulate the movement of the hands.

In the Ptolemaic clock there are two independent bezels and two independent hands. The bezels rotate counterclockwise to simulate the standard clockwise motion of the hands. The hands are not moving but in the frame of reference of the bezels, it's the hands that are rotating. The position of the bezel is always related to the current time and the position of its corresponding hand.

The bezel can move clockwise.

Thanks to Rodrigo Goya for suggesting the name for this kind of clock—Ptolemaic Clock, named so after the geocentric Ptolemaic model of the solar system.

telling time on the Ptolemaic clock

To tell the time on the Ptolemaic clock is a process identical to using the standard clock. You look at the bezel numbers at the ends of the hour and minute hands.

On the fixed bezel layout, most people will take a short cut and tell the time by the position of the hands. This works as long as you have a standard clock. On a Ptolemaic clock the position of the hands tells you nothing.

Here is a Ptolemaic clock telling us it is 6:30. It uses the same position of hands as in the figures above.

You know this because the blue hour hand points to midway between 6 and 7 on the inner hour bezel and the grey minute hand points to 30 on the outer minute bezel.

Non-standard clock with rotating bezel. / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
It is 6:30 on this Ptolemaic clock.

After 15 minutes, it's 6:45 and our Ptolemaic clock bezels have moved a little bit.

Non-standard clock with rotating bezel. / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
It is 6:45 on this Ptolemaic clock.

Can you tell what time it is on the Ptolemaic clock below?

Non-standard clock with rotating bezel. / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
If you answered 8:50, you are correct. It is 8:50.

customizing the Ptolemaic clock

Customizing your Ptolemaic clock is easy. Simply adjust the hands to desired positions and set the time by moving the bezels. The clock below shows the same time as the clock in the above figure — both show 8:50.

Non-standard clock with rotating bezel. / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
This clock tells us it's 8:50. Compare this to the clock in the figure above, which also tells the same time.

ptolemaic clock — hard layout

In the clock design shown here, the hands are the same size and only differ by color. To make things less confusing, emphasize the hour hand.

To make things more confusing, remove all color and number cues, keeping only a single symbol on each of the bezels to indicate 12 o'clock and 0 minutes. This is shown in the clock below.

Non-standard clock with rotating bezel. / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
In the hard layout of a Ptolemaic clock, there are fewer cues. I think it's 8:50.

news room parodies

Spice it up with multiple Ptolemaic clocks side-by-side telling the same time with different hand positions.

Suppose it is 2:30 in Vancouver—this is my location. The clocks below all show 2:30, but with hands set to 5:30, 11:30 and 7:30.

Non-standard clock with rotating bezel. / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Looks like a wall of clocks in a newsroom. Except these Ptolemaic clocks tell us that it's 2:30, three times over in Vancouver.

These hand positions are those that would appear on a standard clock showing the times in New York (5:30), Paris (11:30) and Tokyo (7:30).

Let's now use the Ptolemaic clock to show times at these three locations but with the hand set to the curiously satisfying layout of 10ish minutes to 2.

Non-standard clock with rotating bezel. / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
A challenging panel of Ptolemaic clocks.

TIP

Set both hand positions to 12 o'clock and then remove the hands; to tell time, read the numbers on the hour and minute bezels at the apex of the clock.

EXTENSION

Sophisticated implementations of the Ptolemaic clock could periodically randomize hand positions to keep things interesting; by the time you've figured out the time in the morning, you're wide awake.

Every minute the clock randomly resets its hand positions. The movement is smooth and the bezels follow.

hardware implementation

If you would like to implement the Ptolemaic clock, I would be happy to hear from you. One should be able to take a regular wall clock, reverse the direction of the hand mechanism and rig a freely moving bezel to each of the minute and hour mechanism. The hands should not move and can be fixed to the front glass plate, for example.

conclusions

It should now be clear that the Ptolemaic clock is superior to the standard clock. The reasons are

  • it's much harder to tell time on the Ptolemaic clock, which makes your brain do more work
  • it tips its hat off to a simpler time when we didn't know anything and hints at the possibility of regression anytime
    • it will confuse everyone
    • you have a great excuse for being late
    • return to geocentric values!
  • you can customize your own Ptolemaic clock by moving the hands to arbitrary locations
    • two Ptolemaic clocks can have their hands and bezels at different positions but still be telling the same time
    • two Ptolemaic clocks can have their hands at the same position but be telling different times
VIEW ALL

news + thoughts

Snellen Charts—Typography to Really Look at

Sat 18-02-2017

Another collection of typographical posters. These ones really ask you to look.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Snellen charts designed using physical constants, Braille and elemental abundances in the universe and human body.

The charts show a variety of interesting symbols and operators found in science and math. The design is in the style of a Snellen chart and typset with the Rockwell font.

Essentials of Data Visualization—8-part video series

Fri 17-02-2017
Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca

In collaboration with the Phil Poronnik and Kim Bell-Anderson at the University of Sydney, I'm delighted to share with you our 8-part video series project about thinking about drawing data and communicating science.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Essentials of Data Visualization: Thinking about drawing data and communicating science.

We've created 8 videos, each focusing on a different essential idea in data visualization: encoding, shapes, color, uncertainty, design, drawing missing or unobserved data, labels and process.

The videos were designed as teaching materials. Each video comes with a slide deck and exercises.

P values and the search for significance

Mon 16-01-2017
Little P value
What are you trying to say
Of significance?
—Steve Ziliak

We've written about P values before and warned readers about common misconceptions about them, which are so rife that the American Statistical Association itself has a long statement about them.

This month is our first of a two-part article about P values. Here we look at 'P value hacking' and 'data dredging', which are questionable practices that invalidate the correct interpretation of P values.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Nature Methods Points of Significance column: P values and the search for significance. (read)

We also illustrate how P values can lead us astray by asking "What is the smallest P value we can expect if the null hypothesis is true but we have done many tests, either explicitly or implicitly?"

Incidentally, this is our first column in which the standfirst is a haiku.

Altman, N. & Krzywinski, M. (2017) Points of Significance: P values and the search for significance. Nature Methods 14:3–4.

Background reading

Krzywinski, M. & Altman, N. (2013) Points of significance: Significance, P values and t–tests. Nature Methods 10:1041–1042.

...more about the Points of Significance column

Intuitive Design

Thu 03-11-2016

Appeal to intuition when designing with value judgments in mind.

Figure clarity and concision are improved when the selection of shapes and colors is grounded in the Gestalt principles, which describe how we visually perceive and organize information.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
One of the Gestalt principles tells us that the magenta and green shapes will be perceived as as two groups, overriding the fact that the shapes within the group might be different. What the principle does not tell us is how the reader is likely to value each group. (read)

The Gestalt principles are value free. For example, they tell us how we group objects but do not speak to any meaning that we might intuitively infer from visual characteristics.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Nature Methods Points of View column: Intuitive Design. (read)

This month, we discuss how appealing to such intuitions—related to shapes, colors and spatial orientation— can help us add information to a figure as well as anticipate and encourage useful interpretations.

Krzywinski, M. (2016) Points of View: Intuitive Design. Nature Methods 13:895.

...more about the Points of View column

Regularization

Fri 04-11-2016

Constraining the magnitude of parameters of a model can control its complexity.

This month we continue our discussion about model selection and evaluation and address how to choose a model that avoids both overfitting and underfitting.

Ideally, we want to avoid having either an underfitted model, which is usually a poor fit to the training data, or an overfitted model, which is a good fit to the training data but not to new data.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Nature Methods Points of Significance column: Regularization (read)

Regularization is a process that penalizes the magnitude of model parameters. This is done by not only minimizing the SSE, `\mathrm{SSE} = \sum_i (y_i - \hat{y}_i)^2 `, as is done normally in a fit, but adding to this minimized quantity the sum of the mode's squared parameters, `\mathrm{SSE} + \lambda \sum_i \hat{\beta}^2_i`.

Lever, J., Krzywinski, M. & Altman, N. (2016) Points of Significance: Regularization. Nature Methods 13:803-804.

Background reading

Lever, J., Krzywinski, M. & Altman, N. (2016) Points of Significance: Model Selection and Overfitting. Nature Methods 13:703-704.

Lever, J., Krzywinski, M. & Altman, N. (2016) Points of Significance: Classifier evaluation. Nature Methods 13:603-604.

Lever, J., Krzywinski, M. & Altman, N. (2016) Points of Significance: Logistic regression. Nature Methods 13:541-542.

...more about the Points of Significance column



me as a keyword list

aikido | analogies | animals | astronomy | comfortable silence | cosmology | dorothy parker | drumming | espresso | fundamental forces | good kerning | graphic design | humanism | humour | jean michel jarre | kayaking | latin | little fluffy clouds | lord of the rings | mathematics | negative space | nuance | perceptual color palettes | philosophy of science | photography | physical constants | physics | poetry | pon farr | reason | rhythm | richard feynman | science | secularism | swing | symmetry and its breaking | technology | things that make me go hmmm | typography | unix | victoria arduino | wine | words