Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - contact me Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca on Twitter Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - Lumondo Photography Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - Pi Art Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - Hilbertonians - Creatures on the Hilbert Curve
This love's a nameless dream.Cocteau Twinstry to figure it out

ascii: beautiful


Bioinformatics and Genome Analysis Course. Izmir International Biomedicine and Genome Institute, Izmir, Turkey. May 2–14, 2016


visualization + design

ASCII Art—Proportional Spacing, Tone/Structure Mapping and Fixed Strings

contents

  1. ASCII art
  2. proportional spaced fonts
  3. structural character selection
  4. tone-based character selection
  5. fixed string ASCII art
  6. angled text ASCII art
  7. multi-layer ASCII art
  8. recursive ASCII art

download code

asciifyimage-0.02.tgz

This is a Perl script and requires Imager. See README in the archive for instructions. I cannot provide installation support, but welcome questions and ideas about the method.

examples

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Part of the Pioneer plaque rendered with the sequence of human chromosome 1, using 8 weights of Gotham. (zoom)
Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
DNA helix rendered with string 'dna'. (zoom)

After finding a typographic portrait of Christopher Hitchens, created out of Gill Sans letters by Miles Chic at Capilano University, I thought to resurrect software I wrote a long time ago that converts images into letters and expanding traditional ASCII art by using

  • proportionally spaced fonts
  • a variety of font weights in a single image
  • both tone and structure of the image to select characters
  • fixed strings to render an image in legible text

ASCII Art

The representation of images by characters—ASCII art—has a long history. ASCII art extends the emoticon (or smiley) to represent a larger piece of work. Typically, the works use a fixed-space font (e.g. Courier), originally designed for display on a terminal. Despite the sophistication of computer graphics today, ASCII art continues to have a strong following with new work continually added to public online galleries.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Community contributions to ASCII Art Museum. ASCII art can vary from simple cartoon-like depictions to photorealistic interpretations. (source, zoom)

Photos and paintings can be ASCIIfied using a tone-based approach and automated methods exist to do this (Paul D. O’Grady and Scott T. Rickard (2008) Automatic ASCII Art Conversion of Binary Images Using Non-Negative Constraints).

Many artists generate new creations, exclusive to the medium. Typically this kind of ASCII art is based on the interpretation of structure rather than tone—this method has also been automated (Xuemiao Xu, Linling Zhang, Tien-Tsin Wong (2010) Structure-based ASCII Art).

Proportional spaced and multi-font art

I have written code to generate ASCII art from images by using proportional spaced fonts.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Fixed width fonts (e.g. Pragmata) are popular. ASCII art can be extended to proportionally spaced fonts (e.g. Gotham). More than one weight (or font) can be used to add contrast.

Below is an example of how Pragmata and Gotham can be used to different effect to render an image. When a proportional spaced font is used, the ASCII shape can more fully fill the image.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Comparison of fixed and proportional spaced fonts in ASCII art. Employing multiple weights adds contrast. The grey background is added to emphasize the original image. (zoom)

Let's see how these methods work on a real image. Many ASCII art Mona Lisa versions exist. Below, I render the Mona Lisa with Pragmata, Gotham Book and 8 weights of Gotham.

structural character selection

Two-tone shapes like the S in the figure above require selecting characters that match the structure of the image. (e.g. "|" matches vertical lines). For a given character and image position there are four distinct match possibilities—a combination of whether the character and image have a signal at a position. I show this in the figure below.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Finding the best character involves maximizing overlap (s1, s3) and minimizing penalty (s2, s4).

By maximizing scores derived from matches (s1, s3) and minimizing any penalties (s2, s4), a character is identified based on maximal coverage of the image region and minimum coverage of areas that are blank.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Ink artwork, or thresholded bitmaps in which there are only two tone values, are approximated using structural matching. Here I compare the method of O'Grady and Rickard with my naive structural matching. (zoom)

When proportional text is used, edges are better approximated, such as in the Homer Simpson example below which uses Gotham Book.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
For this image, 17pt text matches the detail well. (zoom)

tone-based character selection

Images that are not two-tone require that we match both structure and tone. Structure is approximated by the choice of character, while tone by choice of font weight. To select the best character based on tone, the character's average tone is compared to the average tone of the section of the image to which it is being compared.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Heavier weights are used to match dark areas of the image. (zoom)

It is possible to combine both structure and tone metrics in character selection. Below is an example of how an image with both tone and structure is interpreted as the tone and structure score weights are varied. The balance between these two metrics can be very hard to find—it greatly depends on the image. Tone-based mapping works well when font size is small and the image is viewed from larger distance—in this case, characters play the role of individual pixels with varying brightness. Structure-based mapping works with larger type and closer viewing distance.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
A tone:structure ratio of 1:0.5 works well for the Star Trek logo. (zoom)

Continuous tone bitmaps are an idea application of multi-font ASCII art—images no longer need to be thresholded or dithered.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Applying both tone and structure character selection metrics to a greyscale image. (source, zoom, )

fixed string ASCII art

ASCII art is generated by dividing the image into a grid and finding the letter (the choice of characters is often expanded to include punctuation) that best matches the grid section. Typically, for each grid the entire set of allowable characters is sampled. Instead, we can limit the choice of character by successively sampling from a fixed string.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Fixed string ASCII art limits the choice of characters available at each grid. Characters can be drawn from a short string (e.g. 'ilovegotham') or from a larger corpus (e.g. Wikipedia entry for Mona Lisa). The string can be contiguous within the image, or locally within the font. (zoom)

rendered with the fixed string "monalisa" using 8 weights of Gotham.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Fixed string ASCII art rendering of Mona Lisa. (zoom)
Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
DNA helix rendered with string 'dna'. (zoom)
Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
DNA helix rendered with sequence from human chromosome 1. (zoom)

angled text ASCII art

Things get even more interesting when the text is angled.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
By applying rotations to the input and output images, the image can be approximated by angled text. (zoom)

multi-layer ASCII art

The image can be textured with multiple layers of ASCII art. In the example below, four layers of text are used, each with a different font size.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Part of the Pioneer plaque rendered with the sequence of human chromosome 1, using 4 layers of sizes (17pt, 33pt, 59pt and 93pt) and 8 weights of Gotham. (zoom)

Instead of varying size, the angle of the text can be changed among layers. This results in a pattern reminiscent of a halftone.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Part of the Pioneer plaque rendered with the sequence of human chromosome 1, using 4 layers with different text rotation (-45, -15, 15, 45 degrees) and 8 weights of Gotham. (zoom)

recursive ASCII art

An image can be asciified several times, with each iteration the asciified output of the previous step used as input for the next. At each step, the font size should be reduced to s → √s.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
ASCII, set in Gotham Ultra (zoom)
Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
The above image asciified using 8 weights of 105pt Gotham and the fixed string 'ASCII'. (zoom)
Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
The asciified example above, asciified again using 8 weights of 11pt Gotham and the fixed string 'ASCII'. (zoom)

news + thoughts

Gene Volume Control

Thu 11-06-2015

I was commissioned by Scientific American to create an information graphic based on Figure 9 in the landmark Nature Integrative analysis of 111 reference human epigenomes paper.

The original figure details the relationships between more than 100 sequenced epigenomes and genetic traits, including disease like Crohn's and Alzheimer's. These relationships were shown as a heatmap in which the epigenome-trait cell depicted the P value associated with tissue-specific H3K4me1 epigenetic modification in regions of the genome associated with the trait.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Figure 9 from Integrative analysis of 111 reference human epigenomes (Nature (2015) 518 317–330). (details)

As much as I distrust network diagrams, in this case this was the right way to show the data. The network was meticulously laid out by hand to draw attention to the layered groups of diseases of traits.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Network diagram redesign of the heatmap for a select set of traits. Only relationships with –log P > 3.9 are displayed. Appears on Graphic Science page in June 2015 issue of Scientific American. (details)

This was my second information graphic for the Graphic Science page. Last year, I illustrated the extent of differences in the gene sequence of humans, Denisovans, chimps and gorillas.

Sampling distributions and the bootstrap

Thu 11-06-2015

The bootstrap is a computational method that simulates new sample from observed data. These simulated samples can be used to determine how estimates from replicate experiments might be distributed and answer questions about precision and bias.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Nature Methods Points of Significance column: Sampling distributions and the bootstrap. (read)

We discuss both parametric and non-parametric bootstrap. In the former, observed data are fit to a model and then new samples are drawn using the model. In the latter, no model assumption is made and simulated samples are drawn with replacement from the observed data.

Kulesa, A., Krzywinski, M., Blainey, P. & Altman, N (2015) Points of Significance: Sampling distributions and the bootstrap Nature Methods 12:477-478.

Background reading

Krzywinski, M. & Altman, N. (2013) Points of Significance: Importance of being uncertain. Nature Methods 10:809-810.

...more about the Points of Significance column

Bayesian statistics

Thu 30-04-2015

Building on last month's column about Bayes' Theorem, we introduce Bayesian inference and contrast it to frequentist inference.

Given a hypothesis and a model, the frequentist calculates the probability of different data generated by the model, P(data|model). When this probability to obtain the observed data from the model is small (e.g. `alpha` = 0.05), the frequentist rejects the hypothesis.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Nature Methods Points of Significance column: Bayesian Statistics. (read)

In contrast, the Bayesian makes direct probability statements about the model by calculating P(model|data). In other words, given the observed data, the probability that the model is correct. With this approach it is possible to relate the probability of different models to identify one that is most compatible with the data.

The Bayesian approach is actually more intuitive. From the frequentist point of view, the probability used to assess the veracity of a hypothesis, P(data|model), commonly referred to as the P value, does not help us determine the probability that the model is correct. In fact, the P value is commonly misinterpreted as the probability that the hypothesis is right. This is the so-called "prosecutor's fallacy", which confuses the two conditional probabilities P(data|model) for P(model|data). It is the latter quantity that is more directly useful and calculated by the Bayesian.

Puga, J.L, Krzywinski, M. & Altman, N. (2015) Points of Significance: Bayes' Theorem Nature Methods 12:277-278.

Background reading

Puga, J.L, Krzywinski, M. & Altman, N. (2015) Points of Significance: Bayes' Theorem Nature Methods 12:277-278.

...more about the Points of Significance column

Bayes' Theorem

Wed 22-04-2015

In our first column on Bayesian statistics, we introduce conditional probabilities and Bayes' theorem

P(B|A) = P(A|B) × P(B) / P(A)

This relationship between conditional probabilities P(B|A) and P(A|B) is central in Bayesian statistics. We illustrate how Bayes' theorem can be used to quickly calculate useful probabilities that are more difficult to conceptualize within a frequentist framework.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Nature Methods Points of Significance column: Bayes' Theorem. (read)

Using Bayes' theorem, we can incorporate our beliefs and prior experience about a system and update it when data are collected.

Puga, J.L, Krzywinski, M. & Altman, N. (2015) Points of Significance: Bayes' Theorem Nature Methods 12:277-278.

Background reading

Oldford, R.W. & Cherry, W.H. Picturing probability: the poverty of Venn diagrams, the richness of eikosograms. (University of Waterloo, 2006)

...more about the Points of Significance column