Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - contact me Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca on Twitter Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - Lumondo Photography Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - Pi Art Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - Hilbertonians - Creatures on the Hilbert Curve
And whatever I do will become forever what I've done.Wislawa Szymborskadon't rehearsemore quotes


Visualizaiton workshop at UBC B.I.G. Research Day. 11 May 2016


visualization + design

Creating the Genome Research November 2012 Cover

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Cover image accompanying Spark: A navigational paradigm for genomic data exploration. Genome Research 22 (11). (zoom, Genome Research)

The Genome Research cover design takes a fun and illustrative approach to visualization. It's both art and science — in a 4:1 ratio.

The cover image accompanies the article by Cydney Nielsen from our visualization group, describing her Spark tool for visualization epigenetics data.

Nielsen CB, Younesy H, O'Geen H, Xu X, Jackson AR, et al. (2012) Spark: A navigational paradigm for genomic data exploration. Genome Res 22: 2262-2269.

Instead of a literal depiction of output from Spark, the final design presents what appears to be necklaces of the kind of tiles that Spark uses for its visual presentation. I took a chance that Genome Research had a sense of humor. Luckily, they did and accepted the design for the cover.

Colored tiles are playfully suspended on vertical strings to illustrate how Spark, presented in this issue, uses clustering to group genomic regions (tiles) with similar data patterns (colored heatmaps) and facilitates genome-wide data exploration.Genome Research 22 (11)

The image was published on the November 2012 issue of cover of Genome Research.

Tools

Illustrator CS5, and a cup (or two) of Galileo coffee from a Rancilio Epoca.

Other Covers

I had two other covers published this year: the PNAS cover accompanied our manuscript about mouse vasculature development and the Trends in Genetics cover was commissioned.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Cover image accompanying our article on mouse vasculature development. Biology turns astrophysical. PNAS 1 May 2012; 109 (18) (zoom, how it was made, PNAS)
Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Cover image for the human genetics special issue. Trends in Genetics October 2012, 28 (10) (lowres, hires, how it was made, Trends in Genetics)

source of design

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
To lower this computational barrier, particularly in the early data exploration phases, Spark was developed as an interactive pattern discovery and visualization tool for epigenomic data. (Spark)

Thinking about design ideas for the cover, I looked to the kind of visual motifs that Spark used for inspiration. Immediately the colorful tiles, which represent clustered data tracks, stood out.

Spark's output is very stylized, colorful and high contrast. It was important to preserve this aesthetic in the design. I also wanted to incorporate the idea of clustering in the design, as well as the concept that the clusters represented data from different parts of the genome.

While it was not important to illustrate how Spark organizes and analyzed data explicitly — in fact, I wanted these aspects to be subtle — it was important that the cover illustration had connections to Spark at several levels.

Spark

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Many genomics techniques produce measurements that have both a value and a position on a reference genome, for example ChIP-sequencing.

Spark was created by Cydney Nielsen, who works with me at the Genome Sciences Center. It is designed to mitigate the difficulties arising from the fact that genome-wide data is typically scattered across thousands of points of interest.

Genome browsers integrate diverse data sets by plotting them as vertically stacked tracks across a common genomic x-axis. Genome browsers are designed for viewing local regions of interest (e.g. an individual gene) and are frequently used during the initial data inspection and exploration phases.

Most genome browsers support zooming along the genome coordinate. This type of overview is not always useful because it produces a summary across a continuous genomic range (e.g. chromosome 1) and not across the subset of regions that are of interest (e.g. genes on chromosome 1). Spark addresses this shortcoming and provides a way to help answer questions like: What are the common data patterns across genes start sites in my data set?

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Spark's approach to analysis and display of epigenetic data.

Spark's visualization is driven by clustering data tracks (e.g. ChIP-seq coverage) from across equivalent regions (e.g. gene start sites). The clustered tracks are displayed as heatmaps, with each row being a data track and each column a windowed region of the genome.

early comps

With fond memories of Monte Carlo simulations from my physics days, I set out to simulate some realistic-looking, but entirely synthetic, Spark cluster tiles.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
A collection of synthetic Spark tiles, each 7x20.

My first idea was a design which would show these tiles falling, perhaps accumulating on a pile on the ground. Quick prototypes of this idea were disappointing. The tiles appeared flimsy and too complex, while the image was largely empty. I spent several hours messing around with the rotation and pseudo-3D layout, but could not find anything that was satisfying.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Spark tiles, falling.
Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Early attempt at a design. Meh.

I thought to do this right would require a proper simulation within a 3D system.

refining the design

To address the fact that the tiles felt flimsy and overly complicated and the design lacked depth, I simplified the tile simulation to generate 5x5 tiles. These simpler representations still embodied how Spark displayed data, but did so minimally.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
A second attempt at simulating Spark clusters.

To keep with the idea that the clusters come from different regions of the genome, I thought of arranging them along line segments. Unlike the design in which the tiles were falling, this constrained the layout significantly and allowed me to play with the design to make it look like the clusters were draped over it. By casting a light shadow behind each string of tiles, a subtle 3D effect could be achieved while still keeping the design within a plane.

There are 11 orientations of tiles created by rotating a thin square around the vertical axis with a slight forward tilt. There are 5 rotations to the left and right at angles 10, 26, 46, 66 and 80 degrees. The rotation was achieved using Illustrator's Extrude and Bevel 3D filter.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Layout of tiles.
Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Rotated tiles with Spark clusters.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Flight and Fall by Rachel Nottingham. (artist's site)

The layout and rotation of the tiles was inspired by Flight and Fall by Rachel Nottingham, a mobile of paper birds.

I wanted to keep the layout of the spark tiles pleasant, without being too organized. I find this to be a difficult balance to achieve — natural randomness is deceptively difficult to create by hand.

final image

Four different versions of the design were submitted to Genome Research. I was happiest with the treatment in which the tiles maintained their color and the Spark clusters were projected as tones of white. This designed felt more solid and punchy — I feel like you can reach out and touch one of those strings.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Final Spark cover designs. The top left one was chosen by Genome Research.
VIEW ALL

news + thoughts

Pathways

Mon 04-01-2016

Apply visual grouping principles to add clarity to information flow in pathway diagrams.

We draw on the Gestalt principles of connection, grouping and enclosure to construct practical guidelines for drawing pathways with a clear layout that maintains hierarchy.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Nature Methods Points of View column: Pathways. (read)

We include tips about how to use negative space and align nodes to emphasizxe groups and how to effectively draw curved arrows to clearly show paths.

Hunnicutt, B.J. & Krzywinski, M. (2016) Points of Viev: Pathways. Nature Methods 13:5.

background reading

Wong, B. (2010) Points of Viev: Gestalt principles (part 1). Nature Methods 7:863.

Wong, B. (2010) Points of Viev: Gestalt principles (part 2). Nature Methods 7:941.

...more about the Points of View column

Multiple Linear Regression

Mon 04-01-2016

When multiple variables are associated with a response, the interpretation of a prediction equation is seldom simple.

This month we continue with the topic of regression and expand the discussion of simple linear regression to include more than one variable. As it turns out, although the analysis and presentation of results builds naturally on the case with a single variable, the interpretation of the results is confounded by the presence of correlation between the variables.

By extending the example of the relationship of weight and height—we now include jump height as a second variable that influences weight—we show that the regression coefficient estimates can be very inaccurate and even have the wrong sign when the predictors are correlated and only one is considered in the model.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Nature Methods Points of Significance column: Multiple Linear Regression. (read)

Care must be taken! Accurate prediction of the response is not an indication that regression slopes reflect the true relationship between the predictors and the response.

Altman, N. & Krzywinski, M. (2015) Points of Significance: Multiple Linear Regression Nature Methods 12:1103-1104.

Background reading

Altman, N. & Krzywinski, M. (2015) Points of significance: Simple Linear Regression Nature Methods 12:999-1000.

...more about the Points of Significance column

Circos and Hive Workshop Workshop—Poznan, Poland

Sun 13-12-2015

Taught how Circos and hive plots can be used to show sequence relationships at Biotalent Functional Annotation of Genome Sequences Workshop at the Institute for Plant Genetics in Poznan, Poland.

Students generated images published in Fast Diploidization in Close Mesopolyploid Relatives of Arabidopsis.

Workshop materials: slides, handout, Circos and hive plot files.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Drawing synteny between modern and ancient genomes with Circos.

Students also learned how to use hive plots to show synteny.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Hive plots are great at showing 3-way sequence comparisons. Here three modern species of Australian Brassicaceae (S. nutans, S. lineare, B. antipoda) are compared based on their common relationships to the ancestral karotype.

Mandakova, T. et al. Fast Diploidization in Close Mesopolyploid Relatives of Arabidopsis The Plant Cell, Vol. 22: 2277-2290, July 2010

Play the Bacteria Game

Mon 14-12-2015

Choose your own dust adventure!

Nobody likes dusting but everyone should find dust interesting.

Working with Jeannie Hunnicutt and with Jen Christiansen's art direction, I created this month's Scientific American Graphic Science visualization based on a recent paper The Ecology of microscopic life in household dust.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
An analysis of dust reveals how the presence of men, women, dogs and cats affects the variety of bacteria in a household. Appears on Graphic Science page in December 2015 issue of Scientific American.

We have also written about the making of the graphic, for those interested in how these things come together.

This was my third information graphic for the Graphic Science page. Unlike the previous ones, it's visually simple and ... interactive. Or, at least, as interactive as a printed page can be.

More of my American Scientific Graphic Science designs

Barberan A et al. (2015) The ecology of microscopic life in household dust. Proc. R. Soc. B 282: 20151139.

Names for 5,092 colors

Tue 03-11-2015

A very large list of named colors generated from combining some of the many lists that already exist (X11, Crayola, Raveling, Resene, wikipedia, xkcd, etc).

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Confused? So am I. That's why I made a list.

For each color, coordinates in RGB, HSV, XYZ, Lab and LCH space are given along with the 5 nearest, as measured with ΔE, named neighbours.

I also provide a web service. Simply call this URL with an RGB string.