Martin Krzywinski / Genome Sciences Center / Martin Krzywinski / Genome Sciences Center / - contact me Martin Krzywinski / Genome Sciences Center / on Twitter Martin Krzywinski / Genome Sciences Center / - Lumondo Photography Martin Krzywinski / Genome Sciences Center / - Pi Art Martin Krzywinski / Genome Sciences Center / - Hilbertonians - Creatures on the Hilbert Curve
syncopation & accordionCafe de Flore (Doctor Rockit)like France, but no dog poopmore quotes

epigenetics: fun

B1;2c UCD Computational and Molecular Biology Symposium, Dublin, Ireland. 1-2 Dec 2016.

visualization + design

Creating the Genome Research November 2012 Cover

Martin Krzywinski @MKrzywinski
Cover image accompanying Spark: A navigational paradigm for genomic data exploration. Genome Research 22 (11). (zoom, Genome Research)

The Genome Research cover design takes a fun and illustrative approach to visualization. It's both art and science — in a 4:1 ratio.

The cover image accompanies the article by Cydney Nielsen from our visualization group, describing her Spark tool for visualization epigenetics data.

Nielsen CB, Younesy H, O'Geen H, Xu X, Jackson AR, et al. (2012) Spark: A navigational paradigm for genomic data exploration. Genome Res 22: 2262-2269.

Instead of a literal depiction of output from Spark, the final design presents what appears to be necklaces of the kind of tiles that Spark uses for its visual presentation. I took a chance that Genome Research had a sense of humor. Luckily, they did and accepted the design for the cover.

Colored tiles are playfully suspended on vertical strings to illustrate how Spark, presented in this issue, uses clustering to group genomic regions (tiles) with similar data patterns (colored heatmaps) and facilitates genome-wide data exploration.Genome Research 22 (11)

The image was published on the November 2012 issue of cover of Genome Research.


Illustrator CS5, and a cup (or two) of Galileo coffee from a Rancilio Epoca.

Other Covers

I had two other covers published this year: the PNAS cover accompanied our manuscript about mouse vasculature development and the Trends in Genetics cover was commissioned.

Martin Krzywinski @MKrzywinski
Cover image accompanying our article on mouse vasculature development. Biology turns astrophysical. PNAS 1 May 2012; 109 (18) (zoom, how it was made, PNAS)
Martin Krzywinski @MKrzywinski
Cover image for the human genetics special issue. Trends in Genetics October 2012, 28 (10) (lowres, hires, how it was made, Trends in Genetics)

source of design

Martin Krzywinski @MKrzywinski
To lower this computational barrier, particularly in the early data exploration phases, Spark was developed as an interactive pattern discovery and visualization tool for epigenomic data. (Spark)

Thinking about design ideas for the cover, I looked to the kind of visual motifs that Spark used for inspiration. Immediately the colorful tiles, which represent clustered data tracks, stood out.

Spark's output is very stylized, colorful and high contrast. It was important to preserve this aesthetic in the design. I also wanted to incorporate the idea of clustering in the design, as well as the concept that the clusters represented data from different parts of the genome.

While it was not important to illustrate how Spark organizes and analyzed data explicitly — in fact, I wanted these aspects to be subtle — it was important that the cover illustration had connections to Spark at several levels.


Martin Krzywinski @MKrzywinski
Many genomics techniques produce measurements that have both a value and a position on a reference genome, for example ChIP-sequencing.

Spark was created by Cydney Nielsen, who works with me at the Genome Sciences Center. It is designed to mitigate the difficulties arising from the fact that genome-wide data is typically scattered across thousands of points of interest.

Genome browsers integrate diverse data sets by plotting them as vertically stacked tracks across a common genomic x-axis. Genome browsers are designed for viewing local regions of interest (e.g. an individual gene) and are frequently used during the initial data inspection and exploration phases.

Most genome browsers support zooming along the genome coordinate. This type of overview is not always useful because it produces a summary across a continuous genomic range (e.g. chromosome 1) and not across the subset of regions that are of interest (e.g. genes on chromosome 1). Spark addresses this shortcoming and provides a way to help answer questions like: What are the common data patterns across genes start sites in my data set?

Martin Krzywinski @MKrzywinski
Spark's approach to analysis and display of epigenetic data.

Spark's visualization is driven by clustering data tracks (e.g. ChIP-seq coverage) from across equivalent regions (e.g. gene start sites). The clustered tracks are displayed as heatmaps, with each row being a data track and each column a windowed region of the genome.

early comps

With fond memories of Monte Carlo simulations from my physics days, I set out to simulate some realistic-looking, but entirely synthetic, Spark cluster tiles.

Martin Krzywinski @MKrzywinski
A collection of synthetic Spark tiles, each 7x20.

My first idea was a design which would show these tiles falling, perhaps accumulating on a pile on the ground. Quick prototypes of this idea were disappointing. The tiles appeared flimsy and too complex, while the image was largely empty. I spent several hours messing around with the rotation and pseudo-3D layout, but could not find anything that was satisfying.

Martin Krzywinski @MKrzywinski
Spark tiles, falling.
Martin Krzywinski @MKrzywinski
Early attempt at a design. Meh.

I thought to do this right would require a proper simulation within a 3D system.

refining the design

To address the fact that the tiles felt flimsy and overly complicated and the design lacked depth, I simplified the tile simulation to generate 5x5 tiles. These simpler representations still embodied how Spark displayed data, but did so minimally.

Martin Krzywinski @MKrzywinski
A second attempt at simulating Spark clusters.

To keep with the idea that the clusters come from different regions of the genome, I thought of arranging them along line segments. Unlike the design in which the tiles were falling, this constrained the layout significantly and allowed me to play with the design to make it look like the clusters were draped over it. By casting a light shadow behind each string of tiles, a subtle 3D effect could be achieved while still keeping the design within a plane.

There are 11 orientations of tiles created by rotating a thin square around the vertical axis with a slight forward tilt. There are 5 rotations to the left and right at angles 10, 26, 46, 66 and 80 degrees. The rotation was achieved using Illustrator's Extrude and Bevel 3D filter.

Martin Krzywinski @MKrzywinski
Layout of tiles.
Martin Krzywinski @MKrzywinski
Rotated tiles with Spark clusters.

Martin Krzywinski @MKrzywinski
Flight and Fall by Rachel Nottingham. (artist's site)

The layout and rotation of the tiles was inspired by Flight and Fall by Rachel Nottingham, a mobile of paper birds.

I wanted to keep the layout of the spark tiles pleasant, without being too organized. I find this to be a difficult balance to achieve — natural randomness is deceptively difficult to create by hand.

final image

Four different versions of the design were submitted to Genome Research. I was happiest with the treatment in which the tiles maintained their color and the Spark clusters were projected as tones of white. This designed felt more solid and punchy — I feel like you can reach out and touch one of those strings.

Martin Krzywinski @MKrzywinski
Final Spark cover designs. The top left one was chosen by Genome Research.


VizUm: Colin Ware and Martin Krzywinski — register for free.


news + thoughts

Model Selection and Overfitting

Tue 13-09-2016

With four parameters I can fit an elephant and with five I can make him wiggle his trunk. —John von Neumann.

By increasing the complexity of a model, it is easy to make it fit to data perfectly. Does this mean that the model is perfectly suitable? No.

When a model has a relatively large number of parameters, it is likely to be influenced by the noise in the data, which varies across observations, as much as any underlying trend, which remains the same. Such a model is overfitted—it matches training data well but does not generalize to new observations.

Martin Krzywinski @MKrzywinski
Nature Methods Points of Significance column: Model Selection and Overfitting (read)

We discuss the use of training, validation and testing data sets and how they can be used, with methods such as cross-validation, to avoid overfitting.

Altman, N. & Krzywinski, M. (2016) Points of Significance: Model Selection and Overfitting. Nature Methods 13:703-704.

Background reading

Lever, J., Krzywinski, M. & Altman, N. (2016) Points of Significance: Classifier evaluation. Nature Methods 13:603-604.

Lever, J., Krzywinski, M. & Altman, N. (2016) Points of Significance: Logistic regression. Nature Methods 13:541-542.

...more about the Points of Significance column

Classifier Evaluation

Tue 13-09-2016

It is important to understand both what a classification metric expresses and what it hides.

We examine various metrics use to assess the performance of a classifier. We show that a single metric is insufficient to capture performance—for any metric, a variety of scenarios yield the same value.

Martin Krzywinski @MKrzywinski
Nature Methods Points of Significance column: Classifier Evaluation (read)

We also discuss ROC and AUC curves and how their interpretation changes based on class balance.

Lever, J., Krzywinski, M. & Altman, N. (2016) Points of Significance: Classifier evaluation. Nature Methods 13:603-604.

Background reading

Lever, J., Krzywinski, M. & Altman, N. (2016) Points of Significance: Logistic regression. Nature Methods 13:541-542.

...more about the Points of Significance column

Happy 2016 `\pi` Approximation, roughly speaking

Sun 24-07-2016

Today is the day and it's hardly an approximation. In fact, `22/7` is 20% more accurate of a representation of `\pi` than `3.14`!

Time to celebrate, graphically. This year I do so with perfect packing of circles that embody the approximation.

By warping the circle by 8% along one axis, we can create a shape whose ratio of circumference to diameter, taken as twice the average radius, is 22/7.

If you prefer something more accurate, check out art from previous `\pi` days: 2013 `\pi` Day and 2014 `\pi` Day, 2015 `\pi` Day, and 2016 `\pi` Day.

Logistic Regression

Tue 13-09-2016

Regression can be used on categorical responses to estimate probabilities and to classify.

The next column in our series on regression deals with how to classify categorical data.

We show how linear regression can be used for classification and demonstrate that it can be unreliable in the presence of outliers. Using a logistic regression, which fits a linear model to the log odds ratio, improves robustness.

Martin Krzywinski @MKrzywinski
Nature Methods Points of Significance column: Logistic regression? (read)

Logistic regression is solved numerically and in most cases, the maximum-likelihood estimates are unique and optimal. However, when the classes are perfectly separable, the numerical approach fails because there is an infinite number of solutions.

Lever, J., Krzywinski, M. & Altman, N. (2016) Points of Significance: Logistic regression. Nature Methods 13:541-542.

Background reading

Altman, N. & Krzywinski, M. (2016) Points of Significance: Regression diagnostics? Nature Methods 13:385-386.

Altman, N. & Krzywinski, M. (2015) Points of Significance: Multiple Linear Regression Nature Methods 12:1103-1104.

Altman, N. & Krzywinski, M. (2015) Points of significance: Simple Linear Regression Nature Methods 12:999-1000.

...more about the Points of Significance column

Visualizing Clonal Evolution in Cancer

Thu 02-06-2016

Genomic instability is one of the defining characteristics of cancer and within a tumor, which is an ever-evolving population of cells, there are many genomes. Mutations accumulate and propagate to create subpopulations and these groups of cells, called clones, may respond differently to treatment.

It is now possible to sequence individual cells within a tumor to create a profile of genomes. This profile changes with time, both in the kinds of mutation that are found and in their proportion in the overall population.

Martin Krzywinski @MKrzywinski
Ways to present temporal and phylogenetic evolution of clones in cancer. M Krzywinski (2016) Molecular Cell 62:652-656. (read)

Clone evolution diagrams visualize these data. These diagrams can be qualitative, showing only trends, or quantitative, showing temporal and population changes to scale. In this Molecular Cell forum article I provide guidelines for drawing these diagrams, focusing with how to use color and navigational elements, such as grids, to clarify the relationships between clones.

Martin Krzywinski @MKrzywinski
How to draw clone evolution diagrams better. M Krzywinski (2016) Molecular Cell xxx:xxx-xxx. (read)

I'd like to thank Maia Smith and Cydney Nielsen for assistance in preparing some of the figures in the paper.

Krzywinski, M. (2016) Visualizing Clonal Evolution in Cancer. Mol Cell 62:652-656.