Martin Krzywinski / Genome Sciences Center / Martin Krzywinski / Genome Sciences Center / - contact me Martin Krzywinski / Genome Sciences Center / on Twitter Martin Krzywinski / Genome Sciences Center / - Lumondo Photography Martin Krzywinski / Genome Sciences Center / - Pi Art Martin Krzywinski / Genome Sciences Center / - Hilbertonians - Creatures on the Hilbert Curve
Twenty — minutes — maybe — more.Naomichoose four wordsmore quotes

EMBO Practical Course: Bioinformatics and Genome Analysis, 5–17 June 2017.

visualization + design

Getting into Visualization of Large Biological Data Sets

The 20 imperatives of information design

Martin Krzywinski, Inanc Birol, Steven Jones, Marco Marra

Presented at Biovis 2012 (Visweek 2012). Content is drawn from my book chapter Visualization Principles for Scientific Communication (Martin Krzywinski & Jonathan Corum) in the upcoming open access Cambridge Press book Visualizing biological data - a practical guide (Seán I. O'Donoghue, James B. Procter, Kate Patterson, eds.), a survey of best practices and unsolved problems in biological visualization. This book project was conceptualized and initiated at the Vizbi 2011 conference.

If you are interested in guidelines for data encoding and visualization in biology, see our Visualization Principles Vizbi 2012 Tutorial and Nature Methods Points of View column by Bang Wong.

Martin Krzywinski @MKrzywinski
Getting into Visualization of Large Biological Data Sets. M Krzywinski, I Birol, S Jones, M Marra (poster presentation) (PDF, Illustrator)

The 20 imperatives of information design


Create legible visualizations with a strong message. Make elements large enough to be resolved comfortably. Bin dense data to avoid sacrificing clarity.

Distinguish between exploration and communication.

Use exploratory tools (e.g. genome browsers) to discover patterns and validate hypotheses. Avoid using screenshots from these applications for communication – they are typically too complex and cluttered with navigational elements to be an effective static figure.

Do not exceed resolution of visual acuity.

Our acuity is ~50 cycles/degree or about 1/200 (0.3 pt) at 10 inches. Ensure the reader can comfortably see detail by limiting resolution to no more than 50% of acuity. Where possible, elements that require visual separation should be at least 1 pt part.

Use no more than ~500 scale intervals.

Ensure data elements are at least 1 pt on a two-column Nature figure (6.22 in), 4 pixels on a 1920 horizontal resolution display, or 2 pixels on a typical LCD projector. These restrictions become challenges for large genomes.

Show variation with statistics.

Data on large genomes must be downsampled. Depict variation with min/max plots and consider hiding it when it is within noise levels. Help the reader notice significant outliers.

Do not draw small elements to scale.

Map size of elements onto clearly legible symbols. Legibility and clarity are more important than precise positioning and sizing. Discretize sizes and positions to facilitate making meaningful comparisons.

Aggregate data for focused theme.

A strong visual message has no uncertainty in its interpretation. Focus on a single theme by aggregating unnecessary detail.

Show density maps and outliers.

Establishing context is helpful when emergent patterns in the data provide a useful perspective on the message. When data sets are large, it is difficult to maintain detail in the context layer because the density of points can visually overwhelm the area of interest. In this case, consider showing only the outliers in the data set.

Consider whether showing the full data set is useful.

The reader’s attention can be focused by increasing the salience of interesting patterns. Other complex data sets, such as networks, are shown more effectively when context is carefully edited or even removed.


Match the visual encoding to the hypothesis. Use encodings specific and sensitive to important patterns. Dense annotations should be independent of the core data in distinct visual layers.

Use the simplest encoding.

Choose concise encodings over elaborate ones.

Help the reader judge accurately.

Accuracy and speed in detecting differences in visual forms depends on how information is presented. We judge relative lengths more accurately than areas, particularly when elements are aligned and adjacent. Our judgment of area is poor because we use length as a proxy, which causes us to systematically underestimate.

Use encodings that are robust and comparable.

In addition to being transparent and predictable, visualizations must be robust with respect to the data. Changes in the data set should be reflected by proportionate changes in the visualization. Be wary of force-directed network layouts, which have low spatial autocorrelation. In general, these are neither sensitive nor specific to patterns of interest.

Crop scale to reveal fine structure in data.

Biological data sets are typically high-resolution (changes at base pair level can meaningful), sparse (distances between changes are orders of magnitude greater than the affected areas) and connect distant regions by adjacency relationships (gene fusions and other rearrangements). It is difficult to take these properties into account on a fixed linear scale, the kind used by traditional genome browsers. To mitigate this, crop and order axis segments arbitrarily and apply a scale adjustment to a segment or portion thereof.

Use perceptual palettes.

Selecting perceptually favorable colors is difficult because most software does not support the required color spaces. Brewer palettes exist for the full range of colors to help us make useful choices. Qualitative palettes have no perceived order of importance. Sequential palettes are suitable for heat maps because they have a natural order and the perceived difference between adjacent colors is constant. Twin hue diverging palettes, are useful for two-sided quantitative encodings, such as immunofluorescence and copy number.

Never use hue to encode magnitude.

Hue does not communicate relative change in values because we perceive hue categorically (blue, green, yellow, etc). Changes within one category have less perceptual impact than transitions between categories. For example, variations across the green/yellow boundary are perceived to be larger than variations across the same sized hue interval in other parts of the spectrum.


Well-designed figures illustrate complex concepts and patterns that may be difficult to express concisely in words. Figures that are clear, concise and attractive are effective – they form a strong connection with the reader and communicate with immediacy. These qualities can be achieved with methods of graphic design, which are based on theories of how we perceive, interpret and organize visual information.

Reduce unnecessary variation.

The reader does not know what is important in a figure and will assume that any spatial or color variation is meaningful. The figure’s variation should come solely from data or act to organize information.

Encapsulate details.

Including details not relevant to the core message of the figure can create confusion. Encapsulation should be done to the same level of detail and to the simplest visual form. Duplication in labels should be avoided.

Use consistent alignment. Center on theme.

Establish equivalence using consistent alignment. Awkward callouts can be avoided if elements are logically placed.

Respect natural hierarchies.

When the data set embodies a natural hierarchy, use an encoding that emphasizes it clearly and memorably. The use hierarchy in layout (e.g. tabular form) and encoding can significantly improve a muddled figure.

Palette for color blindness / Martin Krzywinski @MKrzywinski
This 15-color palette provides good discrimination for common color blindness types. Individuals with tritanopia cannot distinguish colors marked with ● and ◥. (hires)

Be aware of the luminance effect.

Color is a useful encoding – the eye can distinguish about 450 levels of gray, 150 hues, and 10-60 levels of saturation, depending on the color – but our ability to perceive differences varies with context. Adjacent tones with different luminance values can interfere with discrimination, in interaction known as the luminance effect.

Be aware of color blindness.

In an audience of 8 men and 8 women, chances are 50% that at least one has some degree of color blindness. Use a palette that is color-blind safe. In the palette below the 15 colors appear as 5-color tone progressions to those with color blindness. Additional encodings can be achieved with symbols or line thickness.

I have designed 15-color palettes for color blindess for each of the three common types of color blindness.


news + thoughts

Tabular Data

Tue 11-04-2017
Tabulating the number of objects in categories of interest dates back to the earliest records of commerce and population censuses.

After 30 columns, this is our first one without a single figure. Sometimes a table is all you need.

In this column, we discuss nominal categorical data, in which data points are assigned to categories in which there is no implied order. We introduce one-way and two-way tables and the `\chi^2` and Fisher's exact tests.

Altman, N. & Krzywinski, M. (2017) Points of Significance: Tabular data. Nature Methods 14:329–330.

...more about the Points of Significance column

Happy 2017 `\pi` Day—Star Charts, Creatures Once Living and a Poem

Tue 14-03-2017

on a brim of echo,

capsized chamber
drawn into our constellation, and cooling.
—Paolo Marcazzan

Celebrate `\pi` Day (March 14th) with star chart of the digits. The charts draw 40,000 stars generated from the first 12 million digits.

Martin Krzywinski @MKrzywinski
12,000,000 digits of `\pi` interpreted as a star catalogue. (details)

The 80 constellations are extinct animals and plants. Here you'll find old friends and new stories. Read about how Desmodus is always trying to escape or how Megalodon terrorizes the poor Tecopa! Most constellations have a story.

Martin Krzywinski @MKrzywinski
Find friends and stories among the 80 constellations of extinct animals and plants. Oh look, a Dodo guardings his eggs! (details)

This year I collaborate with Paolo Marcazzan, a Canadian poet, who contributes a poem, Of Black Body, about space and things we might find and lose there.

Check out art from previous years: 2013 `\pi` Day and 2014 `\pi` Day, 2015 `\pi` Day and and 2016 `\pi` Day.

Data in New Dimensions: convergence of art, genomics and bioinformatics

Tue 07-03-2017

Art is science in love.
— E.F. Weisslitz

A behind-the-scenes look at the making of our stereoscopic images which were at display at the AGBT 2017 Conference in February. The art is a creative collaboration with Becton Dickinson and The Linus Group.

Its creation began with the concept of differences and my writeup of the creative and design process focuses on storytelling and how concept of differences is incorporated into the art.

Oh, and this might be a good time to pick up some red-blue 3D glasses.

BD Genomics 3D art exhibit - AGBT 2017 / Martin Krzywinski @MKrzywinski
A stereoscopic image and its interpretive panel of single-cell transcriptomes of blood cells: diseased versus healthy control.

Interpreting P values

Thu 02-03-2017
A P value measures a sample’s compatibility with a hypothesis, not the truth of the hypothesis.

This month we continue our discussion about `P` values and focus on the fact that `P` value is a probability statement about the observed sample in the context of a hypothesis, not about the hypothesis being tested.

Martin Krzywinski @MKrzywinski
Nature Methods Points of Significance column: Interpreting P values. (read)

Given that we are always interested in making inferences about hypotheses, we discuss how `P` values can be used to do this by way of the Benjamin-Berger bound, `\bar{B}` on the Bayes factor, `B`.

Heuristics such as these are valuable in helping to interpret `P` values, though we stress that `P` values vary from sample to sample and hence many sources of evidence need to be examined before drawing scientific conclusions.

Altman, N. & Krzywinski, M. (2017) Points of Significance: Interpreting P values. Nature Methods 14:213–214.

Background reading

Krzywinski, M. & Altman, N. (2017) Points of significance: P values and the search for significance. Nature Methods 14:3–4.

Krzywinski, M. & Altman, N. (2013) Points of significance: Significance, P values and t–tests. Nature Methods 10:1041–1042.

...more about the Points of Significance column

Snellen Charts—Typography to Really Look at

Sat 18-02-2017

Another collection of typographical posters. These ones really ask you to look.

Martin Krzywinski @MKrzywinski
Snellen charts designed using physical constants, Braille and elemental abundances in the universe and human body.

The charts show a variety of interesting symbols and operators found in science and math. The design is in the style of a Snellen chart and typset with the Rockwell font.