Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - contact me Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca on Twitter Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - Lumondo Photography Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - Pi Art Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - Hilbertonians - Creatures on the Hilbert Curve
music + dance + projected visualsNosaj Thingmarvel at perfect timingmore quotes

visualization: exciting



See you at Shonan Meeting 167 — Formalizing Biomedical Visualization


visualization + design

Getting into Visualization of Large Biological Data Sets

The 20 imperatives of information design

Martin Krzywinski, Inanc Birol, Steven Jones, Marco Marra

Presented at Biovis 2012 (Visweek 2012). Content is drawn from my book chapter Visualization Principles for Scientific Communication (Martin Krzywinski & Jonathan Corum) in the upcoming open access Cambridge Press book Visualizing biological data - a practical guide (Seán I. O'Donoghue, James B. Procter, Kate Patterson, eds.), a survey of best practices and unsolved problems in biological visualization. This book project was conceptualized and initiated at the Vizbi 2011 conference.

If you are interested in guidelines for data encoding and visualization in biology, see our Visualization Principles Vizbi 2012 Tutorial and Nature Methods Points of View column by Bang Wong.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Getting into Visualization of Large Biological Data Sets. M Krzywinski, I Birol, S Jones, M Marra (poster presentation) (PDF, Illustrator)


The 20 imperatives of information design


ENSURE LEGIBILITY AND FOCUS ON THE MESSAGE

Create legible visualizations with a strong message. Make elements large enough to be resolved comfortably. Bin dense data to avoid sacrificing clarity.

Distinguish between exploration and communication.

Use exploratory tools (e.g. genome browsers) to discover patterns and validate hypotheses. Avoid using screenshots from these applications for communication – they are typically too complex and cluttered with navigational elements to be an effective static figure.

Do not exceed resolution of visual acuity.

Our acuity is ~50 cycles/degree or about 1/200 (0.3 pt) at 10 inches. Ensure the reader can comfortably see detail by limiting resolution to no more than 50% of acuity. Where possible, elements that require visual separation should be at least 1 pt part.

Use no more than ~500 scale intervals.

Ensure data elements are at least 1 pt on a two-column Nature figure (6.22 in), 4 pixels on a 1920 horizontal resolution display, or 2 pixels on a typical LCD projector. These restrictions become challenges for large genomes.

Show variation with statistics.

Data on large genomes must be downsampled. Depict variation with min/max plots and consider hiding it when it is within noise levels. Help the reader notice significant outliers.

Do not draw small elements to scale.

Map size of elements onto clearly legible symbols. Legibility and clarity are more important than precise positioning and sizing. Discretize sizes and positions to facilitate making meaningful comparisons.

Aggregate data for focused theme.

A strong visual message has no uncertainty in its interpretation. Focus on a single theme by aggregating unnecessary detail.

Show density maps and outliers.

Establishing context is helpful when emergent patterns in the data provide a useful perspective on the message. When data sets are large, it is difficult to maintain detail in the context layer because the density of points can visually overwhelm the area of interest. In this case, consider showing only the outliers in the data set.

Consider whether showing the full data set is useful.

The reader’s attention can be focused by increasing the salience of interesting patterns. Other complex data sets, such as networks, are shown more effectively when context is carefully edited or even removed.

USE EFFECTIVE VISUAL ENCODINGS TO ORGANIZE INFORMATION.

Match the visual encoding to the hypothesis. Use encodings specific and sensitive to important patterns. Dense annotations should be independent of the core data in distinct visual layers.

Use the simplest encoding.

Choose concise encodings over elaborate ones.

Help the reader judge accurately.

Accuracy and speed in detecting differences in visual forms depends on how information is presented. We judge relative lengths more accurately than areas, particularly when elements are aligned and adjacent. Our judgment of area is poor because we use length as a proxy, which causes us to systematically underestimate.

Use encodings that are robust and comparable.

In addition to being transparent and predictable, visualizations must be robust with respect to the data. Changes in the data set should be reflected by proportionate changes in the visualization. Be wary of force-directed network layouts, which have low spatial autocorrelation. In general, these are neither sensitive nor specific to patterns of interest.

Crop scale to reveal fine structure in data.

Biological data sets are typically high-resolution (changes at base pair level can meaningful), sparse (distances between changes are orders of magnitude greater than the affected areas) and connect distant regions by adjacency relationships (gene fusions and other rearrangements). It is difficult to take these properties into account on a fixed linear scale, the kind used by traditional genome browsers. To mitigate this, crop and order axis segments arbitrarily and apply a scale adjustment to a segment or portion thereof.

Use perceptual palettes.

Selecting perceptually favorable colors is difficult because most software does not support the required color spaces. Brewer palettes exist for the full range of colors to help us make useful choices. Qualitative palettes have no perceived order of importance. Sequential palettes are suitable for heat maps because they have a natural order and the perceived difference between adjacent colors is constant. Twin hue diverging palettes, are useful for two-sided quantitative encodings, such as immunofluorescence and copy number.

Never use hue to encode magnitude.

Hue does not communicate relative change in values because we perceive hue categorically (blue, green, yellow, etc). Changes within one category have less perceptual impact than transitions between categories. For example, variations across the green/yellow boundary are perceived to be larger than variations across the same sized hue interval in other parts of the spectrum.

USE EFFECTIVE DESIGN PRINCIPLES TO EMPHASIZE AND COMMUNICATE PATTERNS.

Well-designed figures illustrate complex concepts and patterns that may be difficult to express concisely in words. Figures that are clear, concise and attractive are effective – they form a strong connection with the reader and communicate with immediacy. These qualities can be achieved with methods of graphic design, which are based on theories of how we perceive, interpret and organize visual information.

Reduce unnecessary variation.

The reader does not know what is important in a figure and will assume that any spatial or color variation is meaningful. The figure’s variation should come solely from data or act to organize information.

Encapsulate details.

Including details not relevant to the core message of the figure can create confusion. Encapsulation should be done to the same level of detail and to the simplest visual form. Duplication in labels should be avoided.

Use consistent alignment. Center on theme.

Establish equivalence using consistent alignment. Awkward callouts can be avoided if elements are logically placed.

Respect natural hierarchies.

When the data set embodies a natural hierarchy, use an encoding that emphasizes it clearly and memorably. The use hierarchy in layout (e.g. tabular form) and encoding can significantly improve a muddled figure.

Palette for color blindness / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
This 15-color palette provides good discrimination for common color blindness types. Individuals with tritanopia cannot distinguish colors marked with ● and ◥. (hires)

Be aware of the luminance effect.

Color is a useful encoding – the eye can distinguish about 450 levels of gray, 150 hues, and 10-60 levels of saturation, depending on the color – but our ability to perceive differences varies with context. Adjacent tones with different luminance values can interfere with discrimination, in interaction known as the luminance effect.

Be aware of color blindness.

In an audience of 8 men and 8 women, chances are 50% that at least one has some degree of color blindness. Use a palette that is color-blind safe. In the palette below the 15 colors appear as 5-color tone progressions to those with color blindness. Additional encodings can be achieved with symbols or line thickness.

I have designed 15-color palettes for color blindess for each of the three common types of color blindness.

VIEW ALL

news + thoughts

Using Circos in Galaxy Australia Workshop

Thu 20-02-2020

A workshop in using the Circos Galaxy wrapper by Rasche and Hiltemann. Event organized by Australian Biocommons.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Using Circos in Galaxy Australia workshop. (zoom)

Download workshop slides.

Galaxy wrapper training materials, Saskia Hiltemann, Helena Rasche, 2020 Visualisation with Circos (Galaxy Training Materials).

Essence of Data Visualization in Bioinformatics Webinar

Thu 20-02-2020

My webinar on fundamental concepts in data visualization and visual communication of scientific data and concepts. Event organized by Australian Biocommons.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Essence of Data Visualization in Bioinformatics webinar. (zoom)

Download webinar slides.

Markov models — training and evaluation of hidden Markov models

Thu 20-02-2020

With one eye you are looking at the outside world, while with the other you are looking within yourself.
—Amedeo Modigliani

Following up with our Markov Chain column and Hidden Markov model column, this month we look at how Markov models are trained using the example of biased coin.

We introduce the concepts of forward and backward probabilities and explicitly show how they are calculated in the training process using the Baum-Welch algorithm. We also discuss the value of ensemble models and the use of pseudocounts for cases where rare observations are expected but not necessarily seen.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Nature Methods Points of Significance column: Markov models — training and evaluation of hidden Markov models. (read)

Grewal, J., Krzywinski, M. & Altman, N. (2019) Points of significance: Markov models — training and evaluation of hidden Markov models. Nature Methods 17:121–122.

Background reading

Altman, N. & Krzywinski, M. (2019) Points of significance: Hidden Markov models. Nature Methods 16:795–796.

Altman, N. & Krzywinski, M. (2019) Points of significance: Markov Chains. Nature Methods 16:663–664.

Genome Sciences Center 20th Anniversary Clothing, Music, Drinks and Art

Tue 28-01-2020

Science. Timeliness. Respect.

Read about the design of the clothing, music, drinks and art for the Genome Sciences Center 20th Anniversary Celebration, held on 15 November 2019.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Luke and Mayia wearing limited edition volunteer t-shirts. The pattern reproduces the human genome with chromosomes as spirals. (zoom)

As part of the celebration and with the help of our engineering team, we framed 48 flow cells from the lab.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Precisely engineered frame mounts of flow cells used to sequence genomes in our laboratory. (zoom)

Each flow cell was accompanied by an interpretive plaque explaining the technology behind the flow cell and the sample information and sequence content.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
The plaque at the back of one of the framed Illumina flow cell. This one has sequence from a patient's lymph node diagnosed with Burkitt's lymphoma. (zoom)

Scientific data visualization: Aesthetic for diagrammatic clarity

Mon 13-01-2020

The scientific process works because all its output is empirically constrained.

My chapter from The Aesthetics of Scientific Data Representation, More than Pretty Pictures, in which I discuss the principles of data visualization and connect them to the concept of "quality" introduced by Robert Pirsig in Zen and the Art of Motorcycle Maintenance.