view updates

Distractions and amusements, with a sandwich and coffee.

Sun is on my face ...a beautiful day without you.
•
• be apart
• more quotes

*Martin Krzywinski, Inanc Birol, Steven Jones, Marco Marra*

Presented at Biovis 2012 (Visweek 2012). Content is drawn from my book chapter Visualization Principles for Scientific Communication (Martin Krzywinski & Jonathan Corum) in the upcoming open access Cambridge Press book Visualizing biological data - a practical guide (Seán I. O'Donoghue, James B. Procter, Kate Patterson, eds.), a survey of best practices and unsolved problems in biological visualization. This book project was conceptualized and initiated at the Vizbi 2011 conference.

If you are interested in guidelines for data encoding and visualization in biology, see our Visualization Principles Vizbi 2012 Tutorial and Nature Methods Points of View column by Bang Wong.

The 20 imperatives of information design

Create legible visualizations with a strong message. Make elements large enough to be resolved comfortably. Bin dense data to avoid sacrificing clarity.

Use exploratory tools (e.g. genome browsers) to discover patterns and validate hypotheses. Avoid using screenshots from these applications for communication – they are typically too complex and cluttered with navigational elements to be an effective static figure.

Our acuity is ~50 cycles/degree or about 1/200 (0.3 pt) at 10 inches. Ensure the reader can comfortably see detail by limiting resolution to no more than 50% of acuity. Where possible, elements that require visual separation should be at least 1 pt part.

Ensure data elements are at least 1 pt on a two-column Nature figure (6.22 in), 4 pixels on a 1920 horizontal resolution display, or 2 pixels on a typical LCD projector. These restrictions become challenges for large genomes.

Data on large genomes must be downsampled. Depict variation with min/max plots and consider hiding it when it is within noise levels. Help the reader notice significant outliers.

Map size of elements onto clearly legible symbols. Legibility and clarity are more important than precise positioning and sizing. Discretize sizes and positions to facilitate making meaningful comparisons.

A strong visual message has no uncertainty in its interpretation. Focus on a single theme by aggregating unnecessary detail.

Establishing context is helpful when emergent patterns in the data provide a useful perspective on the message. When data sets are large, it is difficult to maintain detail in the context layer because the density of points can visually overwhelm the area of interest. In this case, consider showing only the outliers in the data set.

The reader’s attention can be focused by increasing the salience of interesting patterns. Other complex data sets, such as networks, are shown more effectively when context is carefully edited or even removed.

Match the visual encoding to the hypothesis. Use encodings specific and sensitive to important patterns. Dense annotations should be independent of the core data in distinct visual layers.

Choose concise encodings over elaborate ones.

Accuracy and speed in detecting differences in visual forms depends on how information is presented. We judge relative lengths more accurately than areas, particularly when elements are aligned and adjacent. Our judgment of area is poor because we use length as a proxy, which causes us to systematically underestimate.

In addition to being transparent and predictable, visualizations must be robust with respect to the data. Changes in the data set should be reflected by proportionate changes in the visualization. Be wary of force-directed network layouts, which have low spatial autocorrelation. In general, these are neither sensitive nor specific to patterns of interest.

Well-designed figures illustrate complex concepts and patterns that may be difficult to express concisely in words. Figures that are clear, concise and attractive are effective – they form a strong connection with the reader and communicate with immediacy. These qualities can be achieved with methods of graphic design, which are based on theories of how we perceive, interpret and organize visual information.

The reader does not know what is important in a figure and will assume that any spatial or color variation is meaningful. The figure’s variation should come solely from data or act to organize information.

Including details not relevant to the core message of the figure can create confusion. Encapsulation should be done to the same level of detail and to the simplest visual form. Duplication in labels should be avoided.

When the data set embodies a natural hierarchy, use an encoding that emphasizes it clearly and memorably. The use hierarchy in layout (e.g. tabular form) and encoding can significantly improve a muddled figure.

Color is a useful encoding – the eye can distinguish about 450 levels of gray, 150 hues, and 10-60 levels of saturation, depending on the color – but our ability to perceive differences varies with context. Adjacent tones with different luminance values can interfere with discrimination, in interaction known as the luminance effect.

In an audience of 8 men and 8 women, chances are 50% that at least one has some degree of color blindness. Use a palette that is color-blind safe. In the palette below the 15 colors appear as 5-color tone progressions to those with color blindness. Additional encodings can be achieved with symbols or line thickness.

I have designed 15-color palettes for color blindess for each of the three common types of color blindness.

*With four parameters I can fit an elephant and with five I can make him wiggle his trunk. —John von Neumann.*

By increasing the complexity of a model, it is easy to make it fit to data perfectly. Does this mean that the model is perfectly suitable? No.

When a model has a relatively large number of parameters, it is likely to be influenced by the noise in the data, which varies across observations, as much as any underlying trend, which remains the same. Such a model is overfitted—it matches training data well but does not generalize to new observations.

We discuss the use of training, validation and testing data sets and how they can be used, with methods such as cross-validation, to avoid overfitting.

Altman, N. & Krzywinski, M. (2016) Points of Significance: Model Selection and Overfitting. *Nature Methods* **13**:703-704.

Lever, J., Krzywinski, M. & Altman, N. (2016) Points of Significance: Classifier evaluation. *Nature Methods* **13**:603-604.

Lever, J., Krzywinski, M. & Altman, N. (2016) Points of Significance: Logistic regression. *Nature Methods* **13**:541-542.

*It is important to understand both what a classification metric expresses and what it hides.*

We examine various metrics use to assess the performance of a classifier. We show that a single metric is insufficient to capture performance—for any metric, a variety of scenarios yield the same value.

We also discuss ROC and AUC curves and how their interpretation changes based on class balance.

Lever, J., Krzywinski, M. & Altman, N. (2016) Points of Significance: Classifier evaluation. *Nature Methods* **13**:603-604.

Lever, J., Krzywinski, M. & Altman, N. (2016) Points of Significance: Logistic regression. *Nature Methods* **13**:541-542.

Today is the day and it's hardly an approximation. In fact, `22/7` is 20% more accurate of a representation of `\pi` than `3.14`!

Time to celebrate, graphically. This year I do so with perfect packing of circles that embody the approximation.

By warping the circle by 8% along one axis, we can create a shape whose ratio of circumference to diameter, taken as twice the average radius, is 22/7.

If you prefer something more accurate, check out art from previous `\pi` days: 2013 `\pi` Day and 2014 `\pi` Day, 2015 `\pi` Day, and 2016 `\pi` Day.

*Regression can be used on categorical responses to estimate probabilities and to classify.*

The next column in our series on regression deals with how to classify categorical data.

We show how linear regression can be used for classification and demonstrate that it can be unreliable in the presence of outliers. Using a logistic regression, which fits a linear model to the log odds ratio, improves robustness.

Logistic regression is solved numerically and in most cases, the maximum-likelihood estimates are unique and optimal. However, when the classes are perfectly separable, the numerical approach fails because there is an infinite number of solutions.

Lever, J., Krzywinski, M. & Altman, N. (2016) Points of Significance: Logistic regression. *Nature Methods* **13**:541-542.

Altman, N. & Krzywinski, M. (2016) Points of Significance: Regression diagnostics? *Nature Methods* **13**:385-386.

Altman, N. & Krzywinski, M. (2015) Points of Significance: Multiple Linear Regression *Nature Methods* **12**:1103-1104.

Altman, N. & Krzywinski, M. (2015) Points of significance: Simple Linear Regression *Nature Methods* **12**:999-1000.

Genomic instability is one of the defining characteristics of cancer and within a tumor, which is an ever-evolving population of cells, there are many genomes. Mutations accumulate and propagate to create subpopulations and these groups of cells, called clones, may respond differently to treatment.

It is now possible to sequence individual cells within a tumor to create a profile of genomes. This profile changes with time, both in the kinds of mutation that are found and in their proportion in the overall population.

Clone evolution diagrams visualize these data. These diagrams can be qualitative, showing only trends, or quantitative, showing temporal and population changes to scale. In this Molecular Cell forum article I provide guidelines for drawing these diagrams, focusing with how to use color and navigational elements, such as grids, to clarify the relationships between clones.

I'd like to thank Maia Smith and Cydney Nielsen for assistance in preparing some of the figures in the paper.

Krzywinski, M. (2016) Visualizing Clonal Evolution in Cancer. Mol Cell 62:652-656.