latest news

Distractions and amusements, with a sandwich and coffee.

This love's a nameless dream.
•
• try to figure it out
• more quotes

This tutorial took place on Monday Mar 5th 2012 at VIZBI 2012 in Heidelberg Germany.

*Jessie Kennedy* · We will present fundamental principles of graphic design and visual communication that will help you create more effective interactive and print visualizations. You will learn how the purposeful use of salience, color, consistency and layout can help communicate large data sets and complex ideas with greater immediacy and clarity.

*Cydney Nielsen* · We will illustrate how these principles were implemented in ABySS-Explorer to visualize genome assemblies, an example to show you ways to apply design ideas to your own project.

*Martin Krzywinski* · At the end of the tutorial, you will apply what you have learned in an interactive group session in which you will design a figure illustrating a biological process.

Download agenda + participant list

9:30 – 10:15 | 45 min | Jessie KennedyPrinciples |

10:15 – 10:25 | 10 min | break |

10:25 – 11:10 | 45 min | Cydney NielsenDesign Process |

11:10 – 11:20 | 10 min | form teams + select figure to critique |

11:20 – 11:30 | 10 min | break |

11:30 – 12:00 | 30 min | Martin KrzywinskiPractical — Breakout sessiondownload papers |

12:00 – 13:00 | 60 min | team presentationsInteractive
suggested solutions |

It is not necessary to read the paper from which your figure was selected. I have included the papers only if you are interested in learning about the figure's context.

Effect of resolution on sequence visualization

Principles of effective color selection

Designing effective visualizations in the biological sciences (PSA Genomics Workshop, Seattle, 12 July 2011)

Circos and Hive Plots: Challenging visualization paradigms in genomics and network analysis (PSA Genomics Workshop, Seattle, 12 July 2011)

Designing effective visualizations in the biological sciences (Genome Sciences Center bioinformatics seminar, 26 August 2011)

Drawing Data: Creaing information-rich, informative and appealing figures for publication and presentation (BCCA workshop, 8 Jun 2011)

Behind a great figure is a design principle (BCB Spring Seminar, Iowa State, 27 Feb 2012)

Visualizing Quantitative Information (Genome Sciences Center bioinformatics seminar)

Linux and Genomics: Two Revolutions (USENIX 2004)

Look for my chapter on visualization principles in the upcoming Visualizing Biological Data — a Practical Guide. This book is being written by VIZBI 2011 participants and edited by Sean O'Donoghue and Jim Procter.

Quantile regression explores the effect of one or more predictors on quantiles of the response. It can answer questions such as "What is the weight of 90% of individuals of a given height?"

Unlike in traditional mean regression methods, no assumptions about the distribution of the response are required, which makes it practical, robust and amenable to skewed distributions.

Quantile regression is also very useful when extremes are interesting or when the response variance varies with the predictors.

Das, K., Krzywinski, M. & Altman, N. (2019) Points of significance: Quantile regression. *Nature Methods* **16**:451–452.

Altman, N. & Krzywinski, M. (2015) Points of significance: Simple linear regression. *Nature Methods* **12**:999–1000.

Outliers can degrade the fit of linear regression models when the estimation is performed using the ordinary least squares. The impact of outliers can be mitigated with methods that provide robust inference and greater reliability in the presence of anomalous values.

We discuss MM-estimation and show how it can be used to keep your fitting sane and reliable.

Greco, L., Luta, G., Krzywinski, M. & Altman, N. (2019) Points of significance: Analyzing outliers: Robust methods to the rescue. *Nature Methods* **16**:275–276.

Altman, N. & Krzywinski, M. (2016) Points of significance: Analyzing outliers: Influential or nuisance. Nature Methods 13:281–282.

Two-level factorial experiments, in which all combinations of multiple factor levels are used, efficiently estimate factor effects and detect interactions—desirable statistical qualities that can provide deep insight into a system.

They offer two benefits over the widely used one-factor-at-a-time (OFAT) experiments: efficiency and ability to detect interactions.

Since the number of factor combinations can quickly increase, one approach is to model only some of the factorial effects using empirically-validated assumptions of effect sparsity and effect hierarchy. Effect sparsity tells us that in factorial experiments most of the factorial terms are likely to be unimportant. Effect hierarchy tells us that low-order terms (e.g. main effects) tend to be larger than higher-order terms (e.g. two-factor or three-factor interactions).

Smucker, B., Krzywinski, M. & Altman, N. (2019) Points of significance: Two-level factorial experiments *Nature Methods* **16**:211–212.

Krzywinski, M. & Altman, N. (2014) Points of significance: Designing comparative experiments.. Nature Methods 11:597–598.

Digits, internationally

Celebrate `\pi` Day (March 14th) and set out on an exploration explore accents unknown (to you)!

This year is purely typographical, with something for everyone. Hundreds of digits and hundreds of languages.

A special kids' edition merges math with color and fat fonts.

Check out art from previous years: 2013 `\pi` Day and 2014 `\pi` Day, 2015 `\pi` Day, 2016 `\pi` Day, 2017 `\pi` Day and 2018 `\pi` Day.