Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - contact me Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca on Twitter Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - Lumondo Photography Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - Pi Art Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - Hilbertonians - Creatures on the Hilbert Curve
Embrace me, surround me as the rush comes.Motorcycledrift deeper into the soundmore quotes

vizbi: beautiful


EMBO Practical Course: Bioinformatics and Genome Analysis, 5–17 June 2017.

design + visualization

VIZBI 2012

Visualization Principles Tutorial


This tutorial took place on Monday Mar 5th 2012 at VIZBI 2012 in Heidelberg Germany.

Introduction

Jessie Kennedy · We will present fundamental principles of graphic design and visual communication that will help you create more effective interactive and print visualizations. You will learn how the purposeful use of salience, color, consistency and layout can help communicate large data sets and complex ideas with greater immediacy and clarity.

Cydney Nielsen · We will illustrate how these principles were implemented in ABySS-Explorer to visualize genome assemblies, an example to show you ways to apply design ideas to your own project.

Martin Krzywinski · At the end of the tutorial, you will apply what you have learned in an interactive group session in which you will design a figure illustrating a biological process.

Agenda

Download agenda + participant list

9:30 – 10:15 45 min Jessie Kennedy
Principles
10:15 – 10:25 10 min break
10:25 – 11:10 45 min Cydney Nielsen
Design Process
11:10 – 11:20 10 min form teams + select figure to critique
11:20 – 11:30 10 min break
11:30 – 12:00 30 min Martin Krzywinski
Practical — Breakout session
download papers
12:00 – 13:00 60 min team presentations
Interactive
suggested solutions

It is not necessary to read the paper from which your figure was selected. I have included the papers only if you are interested in learning about the figure's context.

Visualization and Design Resources

Effect of resolution on sequence visualization

Principles of effective color selection

Designing effective visualizations in the biological sciences (PSA Genomics Workshop, Seattle, 12 July 2011)

Circos and Hive Plots: Challenging visualization paradigms in genomics and network analysis (PSA Genomics Workshop, Seattle, 12 July 2011)

Designing effective visualizations in the biological sciences (Genome Sciences Center bioinformatics seminar, 26 August 2011)

Drawing Data: Creaing information-rich, informative and appealing figures for publication and presentation (BCCA workshop, 8 Jun 2011)

Behind a great figure is a design principle (BCB Spring Seminar, Iowa State, 27 Feb 2012)

Visualizing Quantitative Information (Genome Sciences Center bioinformatics seminar)

Blast from the past

Linux and Genomics: Two Revolutions (USENIX 2004)

Visualization Principles VIZBI Book Chapter

Look for my chapter on visualization principles in the upcoming Visualizing Biological Data — a Practical Guide. This book is being written by VIZBI 2011 participants and edited by Sean O'Donoghue and Jim Procter.

VIEW ALL

news + thoughts

Classification and regression trees

Fri 28-07-2017
Decision trees are a powerful but simple prediction method.

Decision trees classify data by splitting it along the predictor axes into partitions with homogeneous values of the dependent variable. Unlike logistic or linear regression, CART does not develop a prediction equation. Instead, data are predicted by a series of binary decisions based on the boundaries of the splits. Decision trees are very effective and the resulting rules are readily interpreted.

Trees can be built using different metrics that measure how well the splits divide up the data classes: Gini index, entropy or misclassification error.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Nature Methods Points of Significance column: Classification and decision trees. (read)

When the predictor variable is quantitative and not categorical, regression trees are used. Here, the data are still split but now the predictor variable is estimated by the average within the split boundaries. Tree growth can be controlled using the complexity parameter, a measure of the relative improvement of each new split.

Individual trees can be very sensitive to minor changes in the data and even better prediction can be achieved by exploiting this variability. Using ensemble methods, we can grow multiple trees from the same data.

Krzywinski, M. & Altman, N. (2017) Points of Significance: Classification and regression trees. Nature Methods 14:757–758.

Background reading

Lever, J., Krzywinski, M. & Altman, N. (2016) Points of Significance: Logistic regression. Nature Methods 13:541-542.

Altman, N. & Krzywinski, M. (2015) Points of Significance: Multiple Linear Regression Nature Methods 12:1103-1104.

Lever, J., Krzywinski, M. & Altman, N. (2016) Points of Significance: Classifier evaluation. Nature Methods 13:603-604.

Lever, J., Krzywinski, M. & Altman, N. (2016) Points of Significance: Model Selection and Overfitting. Nature Methods 13:703-704.

Lever, J., Krzywinski, M. & Altman, N. (2016) Points of Significance: Regularization. Nature Methods 13:803-804.

...more about the Points of Significance column

Personal Oncogenomics Program 5 Year Anniversary Art

Wed 26-07-2017

The artwork was created in collaboration with my colleagues at the Genome Sciences Center to celebrate the 5 year anniversary of the Personalized Oncogenomics Program (POG).

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
5 Years of Personalized Oncogenomics Program at Canada's Michael Smith Genome Sciences Centre. The poster shows 545 cancer cases. (left) Cases ordered chronologically by case number. (right) Cases grouped by diagnosis (tissue type) and then by similarity within group.

The Personal Oncogenomics Program (POG) is a collaborative research study including many BC Cancer Agency oncologists, pathologists and other clinicians along with Canada's Michael Smith Genome Sciences Centre with support from BC Cancer Foundation.

The aim of the program is to sequence, analyze and compare the genome of each patient's cancer—the entire DNA and RNA inside tumor cells— in order to understand what is enabling it to identify less toxic and more effective treatment options.

Principal component analysis

Thu 06-07-2017
PCA helps you interpret your data, but it will not always find the important patterns.

Principal component analysis (PCA) simplifies the complexity in high-dimensional data by reducing its number of dimensions.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Nature Methods Points of Significance column: Principal component analysis. (read)

To retain trend and patterns in the reduced representation, PCA finds linear combinations of canonical dimensions that maximize the variance of the projection of the data.

PCA is helpful in visualizing high-dimensional data and scatter plots based on 2-dimensional PCA can reveal clusters.

Altman, N. & Krzywinski, M. (2017) Points of Significance: Principal component analysis. Nature Methods 14:641–642.

Background reading

Altman, N. & Krzywinski, M. (2017) Points of Significance: Clustering. Nature Methods 14:545–546.

...more about the Points of Significance column

`k` index: a weightlighting and Crossfit performance measure

Wed 07-06-2017

Similar to the `h` index in publishing, the `k` index is a measure of fitness performance.

To achieve a `k` index for a movement you must perform `k` unbroken reps at `k`% 1RM.

The expected value for the `k` index is probably somewhere in the range of `k = 26` to `k=35`, with higher values progressively more difficult to achieve.

In my `k` index introduction article I provide detailed explanation, rep scheme table and WOD example.