Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - contact me Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca on Twitter Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - Lumondo Photography Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - Pi Art Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - Hilbertonians - Creatures on the Hilbert Curve
In your hiding, you're alone. Kept your treasures with my bones.Coeur de Piratecrawl somewhere bettermore quotes

information graphics: beautiful


In Silico Flurries: Computing a world of snow. Scientific American. 23 December 2017

design + visualization

VIZBI 2012

Visualization Principles Tutorial


This tutorial took place on Monday Mar 5th 2012 at VIZBI 2012 in Heidelberg Germany.

Introduction

Jessie Kennedy · We will present fundamental principles of graphic design and visual communication that will help you create more effective interactive and print visualizations. You will learn how the purposeful use of salience, color, consistency and layout can help communicate large data sets and complex ideas with greater immediacy and clarity.

Cydney Nielsen · We will illustrate how these principles were implemented in ABySS-Explorer to visualize genome assemblies, an example to show you ways to apply design ideas to your own project.

Martin Krzywinski · At the end of the tutorial, you will apply what you have learned in an interactive group session in which you will design a figure illustrating a biological process.

Agenda

Download agenda + participant list

9:30 – 10:15 45 min Jessie Kennedy
Principles
10:15 – 10:25 10 min break
10:25 – 11:10 45 min Cydney Nielsen
Design Process
11:10 – 11:20 10 min form teams + select figure to critique
11:20 – 11:30 10 min break
11:30 – 12:00 30 min Martin Krzywinski
Practical — Breakout session
download papers
12:00 – 13:00 60 min team presentations
Interactive
suggested solutions

It is not necessary to read the paper from which your figure was selected. I have included the papers only if you are interested in learning about the figure's context.

Visualization and Design Resources

Effect of resolution on sequence visualization

Principles of effective color selection

Designing effective visualizations in the biological sciences (PSA Genomics Workshop, Seattle, 12 July 2011)

Circos and Hive Plots: Challenging visualization paradigms in genomics and network analysis (PSA Genomics Workshop, Seattle, 12 July 2011)

Designing effective visualizations in the biological sciences (Genome Sciences Center bioinformatics seminar, 26 August 2011)

Drawing Data: Creaing information-rich, informative and appealing figures for publication and presentation (BCCA workshop, 8 Jun 2011)

Behind a great figure is a design principle (BCB Spring Seminar, Iowa State, 27 Feb 2012)

Visualizing Quantitative Information (Genome Sciences Center bioinformatics seminar)

Blast from the past

Linux and Genomics: Two Revolutions (USENIX 2004)

Visualization Principles VIZBI Book Chapter

Look for my chapter on visualization principles in the upcoming Visualizing Biological Data — a Practical Guide. This book is being written by VIZBI 2011 participants and edited by Sean O'Donoghue and Jim Procter.

VIEW ALL

news + thoughts

Statistics vs Machine Learning

Tue 03-04-2018
We conclude our series on Machine Learning with a comparison of two approaches: classical statistical inference and machine learning. The boundary between them is subject to debate, but important generalizations can be made.

Inference creates a mathematical model of the datageneration process to formalize understanding or test a hypothesis about how the system behaves. Prediction aims at forecasting unobserved outcomes or future behavior. Typically we want to do both and know how biological processes work and what will happen next. Inference and ML are complementary in pointing us to biologically meaningful conclusions.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Nature Methods Points of Significance column: Statistics vs machine learning. (read)

Statistics asks us to choose a model that incorporates our knowledge of the system, and ML requires us to choose a predictive algorithm by relying on its empirical capabilities. Justification for an inference model typically rests on whether we feel it adequately captures the essence of the system. The choice of pattern-learning algorithms often depends on measures of past performance in similar scenarios.

Bzdok, D., Krzywinski, M. & Altman, N. (2018) Points of Significance: Statistics vs machine learning. Nature Methods 15:233–234.

Background reading

Bzdok, D., Krzywinski, M. & Altman, N. (2017) Points of Significance: Machine learning: a primer. Nature Methods 14:1119–1120.

Bzdok, D., Krzywinski, M. & Altman, N. (2017) Points of Significance: Machine learning: supervised methods. Nature Methods 15:5–6.

...more about the Points of Significance column

Happy 2018 `\pi` Day—Boonies, burbs and boutiques of `\pi`

Wed 14-03-2018

Celebrate `\pi` Day (March 14th) and go to brand new places. Together with Jake Lever, this year we shrink the world and play with road maps.

Streets are seamlessly streets from across the world. Finally, a halva shop on the same block!

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
A great 10 km run loop between Istanbul, Copenhagen, San Francisco and Dublin. Stop off for halva, smørrebrød, espresso and a Guinness on the way. (details)

Intriguing and personal patterns of urban development for each city appear in the Boonies, Burbs and Boutiques series.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
In the Boonies, Burbs and Boutiques of `\pi` we draw progressively denser patches using the digit sequence 159 to inform density. (details)

No color—just lines. Lines from Marrakesh, Prague, Istanbul, Nice and other destinations for the mind and the heart.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Roads from cities rearranged according to the digits of `\pi`. (details)

The art is featured in the Pi City on the Scientific American SA Visual blog.

Check out art from previous years: 2013 `\pi` Day and 2014 `\pi` Day, 2015 `\pi` Day, 2016 `\pi` Day and 2017 `\pi` Day.

Machine learning: supervised methods (SVM & kNN)

Thu 18-01-2018
Supervised learning algorithms extract general principles from observed examples guided by a specific prediction objective.

We examine two very common supervised machine learning methods: linear support vector machines (SVM) and k-nearest neighbors (kNN).

SVM is often less computationally demanding than kNN and is easier to interpret, but it can identify only a limited set of patterns. On the other hand, kNN can find very complex patterns, but its output is more challenging to interpret.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Nature Methods Points of Significance column: Machine learning: supervised methods (SVM & kNN). (read)

We illustrate SVM using a data set in which points fall into two categories, which are separated in SVM by a straight line "margin". SVM can be tuned using a parameter that influences the width and location of the margin, permitting points to fall within the margin or on the wrong side of the margin. We then show how kNN relaxes explicit boundary definitions, such as the straight line in SVM, and how kNN too can be tuned to create more robust classification.

Bzdok, D., Krzywinski, M. & Altman, N. (2018) Points of Significance: Machine learning: a primer. Nature Methods 15:5–6.

Background reading

Bzdok, D., Krzywinski, M. & Altman, N. (2017) Points of Significance: Machine learning: a primer. Nature Methods 14:1119–1120.

...more about the Points of Significance column

Human Versus Machine

Tue 16-01-2018
Balancing subjective design with objective optimization.

In a Nature graphics blog article, I present my process behind designing the stark black-and-white Nature 10 cover.

Nature 10, 18 December 2017