Here we are now at the middle of the fourth large part of this talk.get nowheremore quotes

# circles: beautiful

DNA on 10th — street art, wayfinding and font # visualization + design The 2019 Pi Day art celebrates digits of $\pi$ with hundreds of languages and alphabets. If you're a kid at heart—rejoice—there's a special edition for you!

# $\pi$ Approximation Day Art Posters 2019 $\pi$ has hundreds of digits, hundreds of languages and a special kids' edition.

The never-repeating digits of $\pi$ can be approximated by $22/7 = 3.142857$ to within 0.04%. These pages artistically and mathematically explore rational approximations to $\pi$. This 22/7 ratio is celebrated each year on July 22nd. If you like hand waving or back-of-envelope mathematics, this day is for you: $\pi$ approximation day!

Want more math + art? Discover the Accidental Similarity Number. Find humor in my poster of the first 2,000 4s of $\pi$.

There are two kinds of $\pi$ Approximation Day posters, which I created to celebrate the 2014 and 2016 $\pi$ approximation days.

The first uses the Archimedean spiral for its design, which I've used before for other numerical art. These ones were generated for the 2014 $\pi$ approximation day.

The second—and newer, for the 2016 $\pi$ approximation day—packs warped circles, whose ratio of circumference to average diameter is $22/7$ into what I call $\pi$-approximate circular packing. Perfect circular packing occupies 78.5% of the area—what about approximate packing? buy artwork
Accuracy of 10,000 rational approximations of $\pi$ for each $m/n$ and $m=1...10000$. (zoom, BUY ARTWORK) buy artwork
Packing of warped circles that embody the 22/7 approximation of $\pi$. Here warped circles are clipped by perfect circles. The color scheme is 1970's retro. (zoom, BUY ARTWORK)
VIEW ALL

# Markov Chains

Tue 30-07-2019

You can look back there to explain things,
but the explanation disappears.
You'll never find it there.
Things are not explained by the past.
They're explained by what happens now.
—Alan Watts

A Markov chain is a probabilistic model that is used to model how a system changes over time as a series of transitions between states. Each transition is assigned a probability that defines the chance of the system changing from one state to another.

Together with the states, these transitions probabilities define a stochastic model with the Markov property: transition probabilities only depend on the current state—the future is independent of the past if the present is known.

Once the transition probabilities are defined in matrix form, it is easy to predict the distribution of future states of the system. We cover concepts of aperiodicity, irreducibility, limiting and stationary distributions and absorption.

This column is the first part of a series and pairs particularly well with Alan Watts and Blond:ish.

Grewal, J., Krzywinski, M. & Altman, N. (2019) Points of significance: Markov Chains. Nature Methods 16:663–664.

# 1-bit zoomable gigapixel maps of Moon, Solar System and Sky

Mon 22-07-2019

Places to go and nobody to see.

Exquisitely detailed maps of places on the Moon, comets and asteroids in the Solar System and stars, deep-sky objects and exoplanets in the northern and southern sky. All maps are zoomable. 3.6 gigapixel map of the near side of the Moon, annotated with 6,733. (details) 100 megapixel and 10 gigapixel map of the Solar System on 20 July 2019, annotated with 758k asteroids, 1.3k comets and all planets and satellites. (details) 100 megapixle and 10 gigapixel map of the Northern Celestial Hemisphere, annotated with 44 million stars, 74,000 deep-sky objects and 3,000 exoplanets. (details) 100 megapixle and 10 gigapixel map of the Southern Celestial Hemisphere, annotated with 69 million stars, 88,000 deep-sky objects and 1000 exoplanets. (details)

# Quantile regression

Sat 01-06-2019
Quantile regression robustly estimates the typical and extreme values of a response.

Quantile regression explores the effect of one or more predictors on quantiles of the response. It can answer questions such as "What is the weight of 90% of individuals of a given height?"

Unlike in traditional mean regression methods, no assumptions about the distribution of the response are required, which makes it practical, robust and amenable to skewed distributions.

Quantile regression is also very useful when extremes are interesting or when the response variance varies with the predictors.

Das, K., Krzywinski, M. & Altman, N. (2019) Points of significance: Quantile regression. Nature Methods 16:451–452.

Altman, N. & Krzywinski, M. (2015) Points of significance: Simple linear regression. Nature Methods 12:999–1000.

# Analyzing outliers: Robust methods to the rescue

Sat 30-03-2019
Robust regression generates more reliable estimates by detecting and downweighting outliers.

Outliers can degrade the fit of linear regression models when the estimation is performed using the ordinary least squares. The impact of outliers can be mitigated with methods that provide robust inference and greater reliability in the presence of anomalous values. Nature Methods Points of Significance column: Analyzing outliers: Robust methods to the rescue. (read)

We discuss MM-estimation and show how it can be used to keep your fitting sane and reliable.

Greco, L., Luta, G., Krzywinski, M. & Altman, N. (2019) Points of significance: Analyzing outliers: Robust methods to the rescue. Nature Methods 16:275–276.

Altman, N. & Krzywinski, M. (2016) Points of significance: Analyzing outliers: Influential or nuisance. Nature Methods 13:281–282.

# Two-level factorial experiments

Fri 22-03-2019
To find which experimental factors have an effect, simultaneously examine the difference between the high and low levels of each.

Two-level factorial experiments, in which all combinations of multiple factor levels are used, efficiently estimate factor effects and detect interactions—desirable statistical qualities that can provide deep insight into a system.

They offer two benefits over the widely used one-factor-at-a-time (OFAT) experiments: efficiency and ability to detect interactions. Nature Methods Points of Significance column: Two-level factorial experiments. (read)

Since the number of factor combinations can quickly increase, one approach is to model only some of the factorial effects using empirically-validated assumptions of effect sparsity and effect hierarchy. Effect sparsity tells us that in factorial experiments most of the factorial terms are likely to be unimportant. Effect hierarchy tells us that low-order terms (e.g. main effects) tend to be larger than higher-order terms (e.g. two-factor or three-factor interactions).

Smucker, B., Krzywinski, M. & Altman, N. (2019) Points of significance: Two-level factorial experiments Nature Methods 16:211–212.

Krzywinski, M. & Altman, N. (2014) Points of significance: Designing comparative experiments.. Nature Methods 11:597–598.

# Happy 2019 $\pi$ Day—Digits, internationally

Tue 12-03-2019

Celebrate $\pi$ Day (March 14th) and set out on an exploration explore accents unknown (to you)!

This year is purely typographical, with something for everyone. Hundreds of digits and hundreds of languages.

A special kids' edition merges math with color and fat fonts.

Check out art from previous years: 2013 $\pi$ Day and 2014 $\pi$ Day, 2015 $\pi$ Day, 2016 $\pi$ Day, 2017 $\pi$ Day and 2018 $\pi$ Day.