Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - contact me Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca on Twitter Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - Lumondo Photography Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - Pi Art Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - Hilbertonians - Creatures on the Hilbert Curve
And whatever I do will become forever what I've done.Wislawa Szymborskadon't rehearsemore quotes

information graphics: beautiful


EMBO Practical Course: Bioinformatics and Genome Analysis, 5–17 June 2017.

design + visualization

VIZBI 2013 Keynote

Visual Design Principles—Communicating Effectively

This talk happened on Thursday, Mar 21st 2013 at VIZBI 2013 at the Broad Institute in Boston.

How often people speak of art and science as though they were two entirely different things, with no interconnection. An artist is emotional, they think, and uses only his intuition; he sees all at once and has no need of reason. A scientist is cold, they think, and uses only his reason; he argues carefully step by step, and needs no imagination. That is all wrong. The true artist is quite rational as well as imaginative and knows what he is doing; if he does not, his art suffers. The true scientist is quite imaginative as well as rational, and sometimes leaps to solutions where reason can follow only slowly; if he does not, his science suffers. —Isaac Asimov (The Roving Mind)

For more visualization and design resources, see my VIZBI 2012 tutorials, Nature Methods Points of View column, and rant about colors.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Do not allow encoding or other design choices to hijaack your message. Each element on the page must meaningfully contribute to your figure.

presentation video

The video will be posted at vizbi.org.

presentation slides

Slides are available as PDF and keynote (zipped).

Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
1/144

A poet is, after all, a sort of scientist, but engaged in a qualitative science in which nothing is measurable. He lives with data that cannot be numbered, and his experiments can be done only once. The information in a poem is, by definition, not reproducible. He becomes an equivalent of scientist, in the act of examining and sorting the things popping in [to his head], finding the marks of remote similarity, points of distant relationship, tiny irregularities that indicate that this one is really the same as that one over there only more important. Gauging the fit, he can meticulously place pieces of the universe together, in geometric configurations that are as beautiful and balanced as crystals. —Lewis Thomas (The Medusa and the Snail: More Notes of a Biology Watcher)

breakout session—making good figures

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Sketch notes by the inimitable Francis Rowland from our breakout group. The question was: what do you need to make good figures? (PDF)

small, medium and big data visualization

If you're asking how to visualize big data, first make sure you're doing a good job on small and medium data. Each scale requires good design.

Do not expect to use one way
to tell many stories

Also consider that there is a very large number of combinations of data sets, hypotheses and possible patterns. Because of this, you cannot expect to use one way to tell many stories. There is no Holy Grail of big data visualization. But there are many good questions to ask and practices to follow that make up a process which can help you get there.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Medium data visualization. This is what happens when you show the data (a strategy that works for small data), instead of explaining it. Yup, we need to work on this too. (A) Qi X et al. J Biotech 144:43 (2012) (Saturation-Mutagenesis in Two Positions Distant from Active Site of a Klebsiella pneumoniae Glycerol Dehydratase Identifies Some Highly Active Mutants) (B) Alekseyev, M.A. et al. Genome Res 19:943 (2009) (Breakpoint graphs and ancestral genome reconstructions)
Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Big data visualization. Yes, data sets are growing but are visual and cognitive abilities are not. There are many data sets, each requiring its own approach. You cannot use one way to tell many stories. Lewis SN et al. PLoS ONE 6:e27175 (2011) (Prediction of Disease and Phenotype Associations from Genome-Wide Association Studies)
VIEW ALL

news + thoughts

Classification and regression trees

Fri 28-07-2017
Decision trees are a powerful but simple prediction method.

Decision trees classify data by splitting it along the predictor axes into partitions with homogeneous values of the dependent variable. Unlike logistic or linear regression, CART does not develop a prediction equation. Instead, data are predicted by a series of binary decisions based on the boundaries of the splits. Decision trees are very effective and the resulting rules are readily interpreted.

Trees can be built using different metrics that measure how well the splits divide up the data classes: Gini index, entropy or misclassification error.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Nature Methods Points of Significance column: Classification and decision trees. (read)

When the predictor variable is quantitative and not categorical, regression trees are used. Here, the data are still split but now the predictor variable is estimated by the average within the split boundaries. Tree growth can be controlled using the complexity parameter, a measure of the relative improvement of each new split.

Individual trees can be very sensitive to minor changes in the data and even better prediction can be achieved by exploiting this variability. Using ensemble methods, we can grow multiple trees from the same data.

Krzywinski, M. & Altman, N. (2017) Points of Significance: Classification and regression trees. Nature Methods 14:757–758.

Background reading

Lever, J., Krzywinski, M. & Altman, N. (2016) Points of Significance: Logistic regression. Nature Methods 13:541-542.

Altman, N. & Krzywinski, M. (2015) Points of Significance: Multiple Linear Regression Nature Methods 12:1103-1104.

Lever, J., Krzywinski, M. & Altman, N. (2016) Points of Significance: Classifier evaluation. Nature Methods 13:603-604.

Lever, J., Krzywinski, M. & Altman, N. (2016) Points of Significance: Model Selection and Overfitting. Nature Methods 13:703-704.

Lever, J., Krzywinski, M. & Altman, N. (2016) Points of Significance: Regularization. Nature Methods 13:803-804.

...more about the Points of Significance column

Personal Oncogenomics Program 5 Year Anniversary Art

Wed 26-07-2017

The artwork was created in collaboration with my colleagues at the Genome Sciences Center to celebrate the 5 year anniversary of the Personalized Oncogenomics Program (POG).

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
5 Years of Personalized Oncogenomics Program at Canada's Michael Smith Genome Sciences Centre. The poster shows 545 cancer cases. (left) Cases ordered chronologically by case number. (right) Cases grouped by diagnosis (tissue type) and then by similarity within group.

The Personal Oncogenomics Program (POG) is a collaborative research study including many BC Cancer Agency oncologists, pathologists and other clinicians along with Canada's Michael Smith Genome Sciences Centre with support from BC Cancer Foundation.

The aim of the program is to sequence, analyze and compare the genome of each patient's cancer—the entire DNA and RNA inside tumor cells— in order to understand what is enabling it to identify less toxic and more effective treatment options.

Principal component analysis

Thu 06-07-2017
PCA helps you interpret your data, but it will not always find the important patterns.

Principal component analysis (PCA) simplifies the complexity in high-dimensional data by reducing its number of dimensions.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Nature Methods Points of Significance column: Principal component analysis. (read)

To retain trend and patterns in the reduced representation, PCA finds linear combinations of canonical dimensions that maximize the variance of the projection of the data.

PCA is helpful in visualizing high-dimensional data and scatter plots based on 2-dimensional PCA can reveal clusters.

Altman, N. & Krzywinski, M. (2017) Points of Significance: Principal component analysis. Nature Methods 14:641–642.

Background reading

Altman, N. & Krzywinski, M. (2017) Points of Significance: Clustering. Nature Methods 14:545–546.

...more about the Points of Significance column

`k` index: a weightlighting and Crossfit performance measure

Wed 07-06-2017

Similar to the `h` index in publishing, the `k` index is a measure of fitness performance.

To achieve a `k` index for a movement you must perform `k` unbroken reps at `k`% 1RM.

The expected value for the `k` index is probably somewhere in the range of `k = 26` to `k=35`, with higher values progressively more difficult to achieve.

In my `k` index introduction article I provide detailed explanation, rep scheme table and WOD example.