Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - contact me Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca on Twitter Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - Lumondo Photography Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - Pi Art Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - Hilbertonians - Creatures on the Hilbert Curve
Drive, driven. Gave, given.YelloGive me a number of games.more quotes

In Silico Flurries: Computing a world of snow. Scientific American. 23 December 2017

design + visualization

VIZBI 2013 Keynote

Visual Design Principles—Communicating Effectively

This talk happened on Thursday, Mar 21st 2013 at VIZBI 2013 at the Broad Institute in Boston.

How often people speak of art and science as though they were two entirely different things, with no interconnection. An artist is emotional, they think, and uses only his intuition; he sees all at once and has no need of reason. A scientist is cold, they think, and uses only his reason; he argues carefully step by step, and needs no imagination. That is all wrong. The true artist is quite rational as well as imaginative and knows what he is doing; if he does not, his art suffers. The true scientist is quite imaginative as well as rational, and sometimes leaps to solutions where reason can follow only slowly; if he does not, his science suffers. —Isaac Asimov (The Roving Mind)

For more visualization and design resources, see my VIZBI 2012 tutorials, Nature Methods Points of View column, and rant about colors.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Do not allow encoding or other design choices to hijaack your message. Each element on the page must meaningfully contribute to your figure.

presentation video

The video will be posted at vizbi.org.

presentation slides

Slides are available as PDF and keynote (zipped).

Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
Martin Krzywinski - VIZBI 2013 Keynote - Visual Design Principles
1/144

A poet is, after all, a sort of scientist, but engaged in a qualitative science in which nothing is measurable. He lives with data that cannot be numbered, and his experiments can be done only once. The information in a poem is, by definition, not reproducible. He becomes an equivalent of scientist, in the act of examining and sorting the things popping in [to his head], finding the marks of remote similarity, points of distant relationship, tiny irregularities that indicate that this one is really the same as that one over there only more important. Gauging the fit, he can meticulously place pieces of the universe together, in geometric configurations that are as beautiful and balanced as crystals. —Lewis Thomas (The Medusa and the Snail: More Notes of a Biology Watcher)

breakout session—making good figures

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Sketch notes by the inimitable Francis Rowland from our breakout group. The question was: what do you need to make good figures? (PDF)

small, medium and big data visualization

If you're asking how to visualize big data, first make sure you're doing a good job on small and medium data. Each scale requires good design.

Do not expect to use one way
to tell many stories

Also consider that there is a very large number of combinations of data sets, hypotheses and possible patterns. Because of this, you cannot expect to use one way to tell many stories. There is no Holy Grail of big data visualization. But there are many good questions to ask and practices to follow that make up a process which can help you get there.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Medium data visualization. This is what happens when you show the data (a strategy that works for small data), instead of explaining it. Yup, we need to work on this too. (A) Qi X et al. J Biotech 144:43 (2012) (Saturation-Mutagenesis in Two Positions Distant from Active Site of a Klebsiella pneumoniae Glycerol Dehydratase Identifies Some Highly Active Mutants) (B) Alekseyev, M.A. et al. Genome Res 19:943 (2009) (Breakpoint graphs and ancestral genome reconstructions)
Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Big data visualization. Yes, data sets are growing but are visual and cognitive abilities are not. There are many data sets, each requiring its own approach. You cannot use one way to tell many stories. Lewis SN et al. PLoS ONE 6:e27175 (2011) (Prediction of Disease and Phenotype Associations from Genome-Wide Association Studies)
VIEW ALL

news + thoughts

Curse(s) of dimensionality

Tue 05-06-2018
There is such a thing as too much of a good thing.

We discuss the many ways in which analysis can be confounded when data has a large number of dimensions (variables). Collectively, these are called the "curses of dimensionality".

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Nature Methods Points of Significance column: Curse(s) of dimensionality. (read)

Some of these are unintuitive, such as the fact that the volume of the hypersphere increases and then shrinks beyond about 7 dimensions, while the volume of the hypercube always increases. This means that high-dimensional space is "mostly corners" and the distance between points increases greatly with dimension. This has consequences on correlation and classification.

Altman, N. & Krzywinski, M. (2018) Points of significance: Curse(s) of dimensionality Nature Methods 15:399–400.

Statistics vs Machine Learning

Tue 03-04-2018
We conclude our series on Machine Learning with a comparison of two approaches: classical statistical inference and machine learning. The boundary between them is subject to debate, but important generalizations can be made.

Inference creates a mathematical model of the datageneration process to formalize understanding or test a hypothesis about how the system behaves. Prediction aims at forecasting unobserved outcomes or future behavior. Typically we want to do both and know how biological processes work and what will happen next. Inference and ML are complementary in pointing us to biologically meaningful conclusions.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Nature Methods Points of Significance column: Statistics vs machine learning. (read)

Statistics asks us to choose a model that incorporates our knowledge of the system, and ML requires us to choose a predictive algorithm by relying on its empirical capabilities. Justification for an inference model typically rests on whether we feel it adequately captures the essence of the system. The choice of pattern-learning algorithms often depends on measures of past performance in similar scenarios.

Bzdok, D., Krzywinski, M. & Altman, N. (2018) Points of Significance: Statistics vs machine learning. Nature Methods 15:233–234.

Background reading

Bzdok, D., Krzywinski, M. & Altman, N. (2017) Points of Significance: Machine learning: a primer. Nature Methods 14:1119–1120.

Bzdok, D., Krzywinski, M. & Altman, N. (2017) Points of Significance: Machine learning: supervised methods. Nature Methods 15:5–6.

...more about the Points of Significance column

Happy 2018 `\pi` Day—Boonies, burbs and boutiques of `\pi`

Wed 14-03-2018

Celebrate `\pi` Day (March 14th) and go to brand new places. Together with Jake Lever, this year we shrink the world and play with road maps.

Streets are seamlessly streets from across the world. Finally, a halva shop on the same block!

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
A great 10 km run loop between Istanbul, Copenhagen, San Francisco and Dublin. Stop off for halva, smørrebrød, espresso and a Guinness on the way. (details)

Intriguing and personal patterns of urban development for each city appear in the Boonies, Burbs and Boutiques series.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
In the Boonies, Burbs and Boutiques of `\pi` we draw progressively denser patches using the digit sequence 159 to inform density. (details)

No color—just lines. Lines from Marrakesh, Prague, Istanbul, Nice and other destinations for the mind and the heart.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Roads from cities rearranged according to the digits of `\pi`. (details)

The art is featured in the Pi City on the Scientific American SA Visual blog.

Check out art from previous years: 2013 `\pi` Day and 2014 `\pi` Day, 2015 `\pi` Day, 2016 `\pi` Day and 2017 `\pi` Day.

Machine learning: supervised methods (SVM & kNN)

Thu 18-01-2018
Supervised learning algorithms extract general principles from observed examples guided by a specific prediction objective.

We examine two very common supervised machine learning methods: linear support vector machines (SVM) and k-nearest neighbors (kNN).

SVM is often less computationally demanding than kNN and is easier to interpret, but it can identify only a limited set of patterns. On the other hand, kNN can find very complex patterns, but its output is more challenging to interpret.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Nature Methods Points of Significance column: Machine learning: supervised methods (SVM & kNN). (read)

We illustrate SVM using a data set in which points fall into two categories, which are separated in SVM by a straight line "margin". SVM can be tuned using a parameter that influences the width and location of the margin, permitting points to fall within the margin or on the wrong side of the margin. We then show how kNN relaxes explicit boundary definitions, such as the straight line in SVM, and how kNN too can be tuned to create more robust classification.

Bzdok, D., Krzywinski, M. & Altman, N. (2018) Points of Significance: Machine learning: a primer. Nature Methods 15:5–6.

Background reading

Bzdok, D., Krzywinski, M. & Altman, N. (2017) Points of Significance: Machine learning: a primer. Nature Methods 14:1119–1120.

...more about the Points of Significance column