Trance opera—Spente le Stelle
• be dramatic

Bioinformatics and Genome Analysis Course. Izmir International Biomedicine and Genome Institute, Izmir, Turkey. May 2–14, 2016

This talk happened on Thursday, Mar 21st 2013 at VIZBI 2013 at the Broad Institute in Boston.

How often people speak of art and science as though they were two entirely different things, with no interconnection. An artist is emotional, they think, and uses only his intuition; he sees all at once and has no need of reason. A scientist is cold, they think, and uses only his reason; he argues carefully step by step, and needs no imagination. That is all wrong. The true artist is quite rational as well as imaginative and knows what he is doing; if he does not, his art suffers. The true scientist is quite imaginative as well as rational, and sometimes leaps to solutions where reason can follow only slowly; if he does not, his science suffers. —Isaac Asimov (The Roving Mind)

For more visualization and design resources, see my VIZBI 2012 tutorials, Nature Methods Points of View column, and rant about colors.

The video will be posted at vizbi.org.

Slides are available as PDF and keynote (zipped).

A poet is, after all, a sort of scientist, but engaged in a qualitative science in which nothing is measurable. He lives with data that cannot be numbered, and his experiments can be done only once. The information in a poem is, by definition, not reproducible. He becomes an equivalent of scientist, in the act of examining and sorting the things popping in [to his head], finding the marks of remote similarity, points of distant relationship, tiny irregularities that indicate that this one is really the same as that one over there only more important. Gauging the fit, he can meticulously place pieces of the universe together, in geometric configurations that are as beautiful and balanced as crystals. —Lewis Thomas (The Medusa and the Snail: More Notes of a Biology Watcher)

If you're asking how to visualize big data, first make sure you're doing a good job on small and medium data. Each scale requires good design.

Do not expect to use one way

to tell many stories

to tell many stories

Also consider that there is a very large number of combinations of data sets, hypotheses and possible patterns. Because of this, you cannot expect to use one way to tell many stories. There is no Holy Grail of big data visualization. But there are many good questions to ask and practices to follow that make up a process which can help you get there.

I was commissioned by Scientific American to create an information graphic based on Figure 9 in the landmark Nature Integrative analysis of 111 reference human epigenomes paper.

The original figure details the relationships between more than 100 sequenced epigenomes and genetic traits, including disease like Crohn's and Alzheimer's. These relationships were shown as a heatmap in which the epigenome-trait cell depicted the *P* value associated with tissue-specific H3K4me1 epigenetic modification in regions of the genome associated with the trait.

As much as I distrust network diagrams, in this case this was the right way to show the data. The network was meticulously laid out by hand to draw attention to the layered groups of diseases of traits.

This was my second information graphic for the Graphic Science page. Last year, I illustrated the extent of differences in the gene sequence of humans, Denisovans, chimps and gorillas.

The bootstrap is a computational method that simulates new sample from observed data. These simulated samples can be used to determine how estimates from replicate experiments might be distributed and answer questions about precision and bias.

We discuss both parametric and non-parametric bootstrap. In the former, observed data are fit to a model and then new samples are drawn using the model. In the latter, no model assumption is made and simulated samples are drawn with replacement from the observed data.

Kulesa, A., Krzywinski, M., Blainey, P. & Altman, N (2015) Points of Significance: Sampling distributions and the bootstrap *Nature Methods* **12**:477-478.

Krzywinski, M. & Altman, N. (2013) Points of Significance: Importance of being uncertain. *Nature Methods* **10**:809-810.

Building on last month's column about Bayes' Theorem, we introduce Bayesian inference and contrast it to frequentist inference.

Given a hypothesis and a model, the frequentist calculates the probability of different data generated by the model, *P*(data|model). When this probability to obtain the observed data from the model is small (e.g. `alpha` = 0.05), the frequentist rejects the hypothesis.

In contrast, the Bayesian makes direct probability statements about the model by calculating P(model|data). In other words, given the observed data, the probability that the model is correct. With this approach it is possible to relate the probability of different models to identify one that is most compatible with the data.

The Bayesian approach is actually more intuitive. From the frequentist point of view, the probability used to assess the veracity of a hypothesis, P(data|model), commonly referred to as the *P* value, does not help us determine the probability that the model is correct. In fact, the *P* value is commonly misinterpreted as the probability that the hypothesis is right. This is the so-called "prosecutor's fallacy", which confuses the two conditional probabilities *P*(data|model) for *P*(model|data). It is the latter quantity that is more directly useful and calculated by the Bayesian.

Puga, J.L, Krzywinski, M. & Altman, N. (2015) Points of Significance: Bayes' Theorem *Nature Methods* **12**:277-278.

Puga, J.L, Krzywinski, M. & Altman, N. (2015) Points of Significance: Bayes' Theorem *Nature Methods* **12**:277-278.

In our first column on Bayesian statistics, we introduce conditional probabilities and Bayes' theorem

*P*(B|A) = *P*(A|B) × *P*(B) / *P*(A)

This relationship between conditional probabilities *P*(B|A) and *P*(A|B) is central in Bayesian statistics. We illustrate how Bayes' theorem can be used to quickly calculate useful probabilities that are more difficult to conceptualize within a frequentist framework.

Using Bayes' theorem, we can incorporate our beliefs and prior experience about a system and update it when data are collected.

Puga, J.L, Krzywinski, M. & Altman, N. (2015) Points of Significance: Bayes' Theorem *Nature Methods* **12**:277-278.

Oldford, R.W. & Cherry, W.H. Picturing probability: the poverty of Venn diagrams, the richness of eikosograms. (University of Waterloo, 2006)