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A recent study of a large number of genes in a panel of breast and colorectal cancers identified somatic mutations in
1149 genes. To identify potential biological processes affected by these genes, we examined their putative roles based
on sequence similarity, membership in known functional groups and pathways, and predicted interactions with other
proteins. These analyses identified functional groups and pathways that were enriched for mutated genes in both
tumor types. Additionally, the results pointed to differences in molecular mechanisms that underlie breast and
colorectal cancers, including various intracellular signaling and metabolic pathways. These studies provide a
multidimensional framework to guide further research and help identify cellular processes critical for malignant
progression and therapeutic intervention.

[Supplemental material is available online at www.genome.org.]

Cancer arises through the gradual accumulation of alterations in
oncogenes and tumor suppressor genes. In an effort to identify
such genes on a genomic scale, we have recently performed a
systematic sequencing study of the majority of human genes in
breast and colorectal cancers (Sjöblom et al. 2006). Analysis of
13,023 genes in 11 samples of each tumor type identified 1307
somatic (i.e., tumor-specific) mutations in 1149 genes. Using a
statistical model that incorporated the mutation type, frequency,
and sequence context, we identified a set of nearly 200 candidate
cancer genes (CAN-genes) that were likely to play a driving role in
tumorigenesis. In addition to the CAN-genes, there were addi-
tional mutated genes that may have been selected for during
tumorigenesis, but which were mutated at a frequency that
would not allow them to be distinguished from unselected pas-
senger changes. The genes mutated in breast cancers were quite
different from those mutated in colorectal cancers. Moreover,
there were substantial differences in the mutated gene comple-
ment among any two samples of the same tumor type. Overall,
this effort has identified a plethora of novel genes that are likely
to play a role in human cancer. However, the study also sug-
gested a higher level of complexity, in terms of both the number
and type of genes involved, than previously thought to underlie
the tumorigenic process.

Given this complexity, a systems biological approach could
be useful to identify patterns among the mutated genes and to
help interpret the genetic landscape of the two tumor types. An
optimal approach of this sort would not only examine the indi-
vidual roles of the mutated gene products, but would also explore
their relationships, interactions, and network properties. Under-
standing this interplay could provide insight into mechanisms of
tumorigenesis and prioritize specific pathways and processes for
future genetic and biochemical research.

In this study, we take advantage of existing genomic and

proteomic databases to highlight different aspects of the genes
that are mutated in breast and colorectal cancers. Our analysis
uses four different system-level perspectives: (1) sequence simi-
larity, (2) functional annotation (including cellular function,
biochemical processes, and subcellular localization), (3) protein–
protein interactions, and (4) molecular pathways. At each of
these levels, we identify specific gene groups that were enriched
for genetic alterations, revealing potentially aberrant cellular pro-
cesses in the tumors.

Results

Protein sequence similarity

We first evaluated the proteins encoded by the 1149 mutated
genes through sequence-similarity analyses. This approach pro-
vides an unbiased means to group proteins based on their en-
coded information content. Two complementary methods were
used: pairwise basic local alignment search tool (BLAST) analysis
and comparison of protein domains using information from ex-
isting databases. Sequence comparisons via BLAST facilitated ex-
amination of entire coding regions, while analyses of protein
domains identified motifs and sequence relationships that would
not be evident through whole gene comparisons.

To compare entire coding regions we used BLASTP (Altschul
et al. 1990) to compare sequences of all mutant proteins and
constructed protein networks based on high-sequence similarity
(Fig. 1). These networks identified clusters of proteins, each la-
beled according to the predominant functional role of the pro-
teins contained. From a global perspective, breast and colorectal
cancers shared many common clusters, including zinc finger pro-
teins, cadherins, and genes involved in cell adhesion and signal
transduction. Clusters that were mutated in one tumor type but
not the other included semaphorins, RNA helicases, and DNA
helicases in breast cancers and metalloproteinases, voltage-gated
K+ channels, and orphan G-protein coupled receptors in colorec-
tal cancers.
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Figure 1. Sequence similarity among mutated genes in breast and colorectal cancers. Each cluster represents genes that are mutated in breast (top)
or colorectal cancers (bottom). Each node represents a gene that is colored according to the Cancer Mutation Prevalence Score (CaMP score), and each
line represents a sequence-similarity relationship that is colored according to degree of sequence similarity. CAN-genes identified by Sjöblom et al. (2006)
have a CaMP score >1 and are colored in orange and red. Clusters are named according to the predominant genes contained within each cluster, and
those containing only two genes are not shown. The percentage of the total mutated genes contained within each cluster is showed in parentheses.
The inset highlights local similarity within protein domains of genes in a specific cluster.
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Genes that have high sequence identity often participate in
similar intracellular roles, either through related biochemical
functions, protein dimerization, genetic interactions, or more
complex relationships. Within the clusters shown in Figure 1
there were several instances of patterns suggesting common
functions during tumorigenesis. For example, mutations in eph-
rin receptors EPHA3, EPHA4, EPHA7, or EPHB6 affected 10 of the
35 colorectal tumors examined, but no tumor contained muta-
tions in more than a single ephrin receptor, suggesting mutual
exclusivity among mutations in these genes. Global analyses of
sequence-similarity clusters in both breast and colorectal cancers
identified nine and four clusters that showed mutual exclu-
sivity, respectively. While the genes within some pathways act
in series, and mutation of one member of the pathway is
sufficient to disrupt function, clusters of sequence similarity
may also include members that act in parallel pathways. For ex-
ample, mutations in the TGF-beta pathway mediators SMAD2,
SMAD3, or SMAD4 occurred in seven of 35 tumors. While muta-
tions in SMAD4 did not occur in tumors with other SMAD mu-
tations, both SMAD2 and SMAD3 were co-mutated in colorectal
tumors Mx30 and Hx5 (Supplemental Fig. 1). Interestingly,
SMAD2 or SMAD3 can separately heterodimerize with SMAD4
transcription factors upon pathway activation and mediate tran-
scriptional responses (Jayaraman and Massague 2000). These re-
sults suggest that inactivation of either SMAD4 alone or SMAD2
and SMAD3 together have similar effects on the TGF-beta recep-
tor pathway.

A complementary method for analysis of sequence similar-
ity takes advantage of information from existing databases. In-
stead of determining relatedness solely using BLASTP, other
methods such as Hidden Markov Models and consensus se-
quences have facilitated in-depth comparisons of protein se-
quences. The Integrated Resource of Protein Families, Domains,
and Sites (InterPro) database incorporates information from 16
protein databases, including Pfam, ProDom, PRINTS, PROSITE,
and SMART (Apweiler et al. 2001). Using the annotation pro-
vided by InterPro 13.0, we examined the protein sequences of all
mutated genes for the presence of specific domains. A total of
13,147 possible domains were examined in 1149 mutated pro-
teins, resulting in a total of 1029 proteins that were found to have
3549 domain assignments.

We examined these data in two ways to determine whether
gene groups containing specific domains were more likely to be
mutated than predicted by chance alone. First, we determined
whether the number of mutations in gene groups containing
specific domains reflected a mutation prevalence that was sig-
nificantly higher than the passenger mutation prevalence. We
performed these calculations for breast and colorectal cancers sepa-
rately, using the conservative assumption that the observed muta-
tion frequencies of 2.5 and 3.3 mutations per million base pairs,
respectively, constituted the passenger rates. Note that this criterion
is highly conservative, as the observed mutations actually represent
the sum of passenger mutations and those mutations selected for
during tumorigenesis (i.e., pathogenic mutations). The resulting
Group CaMP score is similar to that used to derive the Cancer
Mutation Prevalence (CaMP) score for individual genes. The Group
CaMP score incorporated the total number of mutations from all
genes within each group, the combined lengths of the genes in each
group, and the total number of tumors examined. The P-value of
observing at least the number of mutations in a binomial distribu-
tion was calculated and corrected with the Benjamini–Hochberg
algorithm (Benjamini and Hochberg 1995).

Second, we examined whether the distributions of indi-
vidual CaMP scores of mutated genes containing domains of in-
terest were different from mutated genes not containing such
domains. To compare such distributions, we adapted the Gene
Set Enrichment Analysis (GSEA) algorithm, using CaMP scores of
individual genes instead of summaries of gene-expression values
(Subramanian et al. 2005). The CaMP GSEA approach incorpo-
rates the set of individual CaMP scores from all genes within each
group, accounting for the number, type and context of muta-
tions observed, gene length, as well as the total number of tu-
mors examined. This approach is complementary to the group
CaMP score described above; while the former approach is more
sensitive to the overall mutation prevalence in a group of genes,
the latter would be expected to identify more subtle differences
among the mutated genes within such groups.

After identification of candidate groups that were signifi-
cantly enriched for mutations using these approaches, we filtered
the results to identify those groups that were also enriched for an
increased number of mutant genes. Specifically, we determined
whether the ratio of the number of mutant genes containing
each specific domain to all genes containing that domain was
statistically higher than the ratio of the total number of mutant
genes (1149) to the number of all the genes (13,023) analyzed.
This filtering step ensured that multiple genes within each gene
group must be affected in order for the entire group to be con-
sidered of interest. A gene group that had contained only one
highly mutated gene (e.g., mutations only in TP53) would
thereby be excluded.

Using these two analysis approaches (Group CaMP and
CaMP GSEA), a total of 31 and 22 InterPro domains were signifi-
cantly associated with colorectal and breast cancers, respectively
(Table 1; Supplemental Table 1). In colorectal cancers, the ma-
jority were determined to be significant by both methods and
involved several related protein domains. For example, 14 of the
identified domains are in proteins that have extracellular regions
or are involved in cell–cell interactions (e.g., four immuloglobu-
lin-related domains, two fibronectin domains, six EGF-related
domains, and two cadherin-related domains). An additional five
domains (e.g., pleckstrin-like domain, DH domain, Ephrin recep-
tor ligand-binding domain, Sterile alpha motif homology 2, and
receptor tyrosine kinase domain) are known to be involved in
protein kinase or G protein signal transduction pathways. Do-
mains identified that were associated with metalloproteases in-
clude reprolysin, peptidase M12B propeptide, cysteine-rich
ADAM, and disintegrin. Finally, domains present in TGF-beta
pathway transcription mediators SMAD (MAD homology 1 and
MAD homology 2 domains) were also identified as significantly
associated with colorectal cancer. Interestingly, proteins contain-
ing MAD homology, ephrin receptor, and Treacher Collins Syn-
drome protein domains were found to be exclusively mutated in
colorectal cancers, while members of the other domains were
mutated in both tumor types. Other domains shared by both
cancer types include three of the extracellular EGF-related do-
mains, as well as two domains involved in signaling, the DH
domain and the pleckstrin-like domain. In breast cancers, two
motifs were detected by both the Group CaMP and GSEA meth-
ods: one was the spectrin repeat domain that is present in various
cytoskeletal proteins, while the second was the relatively non-
specific proline-rich region domain that was also associated with
colorectal cancers. Three domains related to ABC transporters
and two domains involved in actin binding were preferentially
identified in breast tumors.
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Functional annotation and gene ontology

In addition to analyses based on sequence content, the mutated
genes were categorized according to their annotated biological
roles. The Gene Ontology (GO) Consortium has devised a con-
trolled vocabulary for describing molecular functions and bio-
logical processes of genes based on information obtained from
the literature and from sequence and biological databases
(Ashburner et al. 2000). These are represented in hierarchical
levels of directed acyclic relationships that progress from general
descriptions to progressively more specific descriptions. In gen-
eral, a gene can have multiple descriptions, and functional de-
scriptions for any gene using GO can be complex. To simplify
such descriptions, methods have been designed to summarize
the GO relationships into fewer general categories (Camon et al.
2004; Martin et al. 2004). For these analyses, we first used a gen-
eral approach to examine the broad functional categories of all
mutated genes in breast and colorectal cancers (Fig. 2), and then
identified the specific GO groups that were preferentially associ-
ated with each of these tumor types (Table 2).

Classification of the mutated genes into general functional
categories was visualized using OSPREY (Fig. 2) (Breitkreutz et al.
2003). In accord with our initial analysis of a small subset of
mutated genes (Sjöblom et al. 2006), the comprehensive analyses
of all mutated genes resulted in similar compositions of func-
tional categories for both breast and colorectal cancers. The frac-
tions of different functional categories were largely comparable
between the two cancer types, with the two largest comprising
signal transduction and metabolism. Importantly, the individual
genes that were included in these categories were different in the
different tumor types, and individual tumors had a varying com-
position of genes belonging to these functional categories
(Supplemental Fig. 2). Noticeably, over a third of the mutant
genes were not assigned to any functional category using the
current annotation, a fraction that would be expected to decrease
as additional biological data are obtained. A similar analysis of
the subset of genes most highly mutated in breast and colorectal
cancers identified subtle differences in composition of function-
al categories (Fig. 2). These analyses suggest that genes that
are selected for mutation in human cancer may come from a
variety of different functional categories, but that such broad
categories may not be helpful in accurately capturing specific
functional aspects of genes that are preferentially mutated in
tumors.

In order to identify more specific molecular functions for
the mutant genes, we examined the full set of 18,740 GO groups.
Using approaches similar to that used in the analysis of protein
domains, we identified GO groups that were enriched for the
number of mutations or distribution of CaMP scores using CaMP
GSEA and Group CaMP approaches. In colorectal cancer, we
identified 11 GO groups to be significant by either method (Table
2; Supplemental Table 2). Groups such as ephrin receptor activity
as well as metalloendopeptidase activity corroborated results
identified above through the analysis of protein domains. Two of
the largest functional groups, cell adhesion and receptor activity,
had 24 and 39 mutated genes and 60 and 63 mutations, respec-
tively. More specific subgroups from these groups included insu-
lin receptor binding and homophilic cell adhesion.

In breast cancers, 15 functional groups were identified, none
overlapping precisely with those of colon. The most closely re-
lated ones involved functional groups that were involved in cell
adhesion. The largest group identified was calcium ion binding,

which included 50 mutated genes and 77 mutations. Five groups
were associated with the extracellular matrix, including extracel-
lular matrix organization and biogenesis, extracellular matrix
structural constituent, microtubule binding, actin binding, and
cell–cell adhesion. Interestingly, two metabolic groups were af-
fected in breast tumors: the overlapping groups of the urea cycle
and arginine biosynthesis. Finally, there were three groups re-
lated to G protein signaling: GTPase activator activity and two
Rho protein modulating groups. These analyses clearly show that
while overall functional patterns may be similar between breast
and colorectal cancers, the specific group constituents of these
general categories are quite different.

Protein interactions

As part of their biologic roles, many proteins physically interact
with other proteins; such interactions can form protein com-
plexes or may represent functional components of molecular
pathways. An additional perspective on gene function can there-
fore be realized through the analysis of physical interactions.
Efforts to identify interacting proteins at a genome-wide scale,
termed interactomes, have been performed for yeast (Uetz et al.
2000; Ito et al. 2001), fly (Giot et al. 2003), and worm (Li et al.
2004). Although the human interactome is incomplete, human
protein–protein interactions can be inferred from data on model
organisms using interologs (human protein orthologs that are
known to interact in other organisms). Such interologs have dif-
fering levels of reliability, in part based on the strength of the
interaction, the number of organisms in which the interaction is
observed, and the sequence similarity of the interacting proteins
to their human counterparts. Using this approach, we examined
the predicted interactions of mutated proteins with other pro-
teins. Overall, this analysis showed that the mutant proteins in-
teracted with more partners than typical human proteins. Pro-
teins encoded by CCDS genes had an average of 11.8 predicted
interactions each, while the set of the 189 most highly mutated
CAN-genes had an average of 26.0 and 16.4 interactions in colon
and breast cancers, respectively (P = 0.02 and 0.12, Student’s t-
test). Proteins with a large number of interactions have been
suggested to serve as essential hubs of molecular pathways such
as those that are disrupted in cancers (Jonsson and Bates
2006).

To identify networks of interacting proteins that were pref-
erentially altered in cancers, we analyzed the predicted interac-
tions of mutated proteins in each tumor type (Fig. 3; Supplemen-
tal Figs. 3, 4). In breast cancers, over half of the mutated proteins
(59 of 83) were predicted to participate in a large interaction
cluster driven by links to TP53, BRCA1, PIK3R1, and NFKB. In
contrast, the largest interaction cluster in colorectal cancers in-
volved SMAD proteins and contained only 12 proteins, and the
only cluster containing more than five proteins included TP53.
These analyses emphasize how mutation studies coupled with
systems analysis can provide information useful for understand-
ing the pathways through which the mutant proteins function.
For example, the mutation interactome highlighted three inter-
acting SMAD proteins in colorectal cancers and a cluster of cir-
cadian rhythm proteins (PER1, PER2, and TIMELESS) in breast
cancers. The proteins encoded by the latter three genes are
thought to control cell cycle progression, and genetic inactiva-
tion of one of the genes (Per2) has been shown to lead to tumor
predisposition in mice (Fu et al. 2002; Chen et al. 2005; Lee
2006).

A multidimensional analysis of cancer genomes
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Molecular pathways

Pathways can be defined as the stepwise interaction of multiple
proteins designed to achieve a defined cellular process. A variety

of signaling, metabolic, and other pathways have been cataloged
by the Kyoto Encylopedia of Genes and Genomes (KEGG) (Ogata
et al. 1999), the iPATH (http://escience.invitrogen.com/ipath/),
BioCarta (http://www.biocarta.com/), and sigPathways (Tian et

Figure 2. General functional categorization of genes mutated in breast and colorectal cancers. Each small circle represents a mutated gene in breast
or colorectal cancer and is colored according to the general functional categories shown in the legend (for details, see Methods). The entire set of circles
represents all the genes mutated in each cancer type, while the interior subset is comprised of the genes with the highest CaMP Scores (the CAN-genes).
The percentage of genes that belong to each functional category is shown in the legend.

Lin et al.
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al. 2005) databases. To determine whether certain pathways may
be preferentially targeted by genetic alterations in human cancer,
we compared the genes found to be mutated in Sjöblom et al.
(2006) to the constituents of the 825 pathways contained in
these four sources. We then determined whether the number of
mutations and the distribution of CaMP scores within each path-
way is statistically significant using Group CaMP and CaMP
GSEA methods. The intersections of the two methods for the four
different databases are shown in Figure 4.

In colorectal cancer, 21 pathways were identified to be en-
riched for mutations from the different pathway databases (Table
3; Supplemental Table 3). Two pathways previously implicated in
colorectal tumorigenesis were identified in multiple databases;
TGF-beta signaling was identified in three databases and WNT
signaling in two. Other signaling pathways contributing to tu-
morigenesis were also identified, including Insulin signaling,
JAK/STAT signaling, MAP kinase signaling, and hedgehog signal-
ing pathways. Two pathways identified were related to the cell
cycle and the G1/S and G2/M checkpoints. Finally, genes in path-
ways thought to be important in controlling cell–cell interac-

tions (axon guidance, adherens junc-
tions, and gap junctions) were preferen-
tially mutated in colorectal cancers.

In breast cancer, several known sig-
naling and checkpoint pathways were
also identified (Table 3; Supplemental
Table 3). These included those involved
in AKT signaling, in BRCA1 and BRCA2
repair and cell cycle regulation pro-
cesses, and in ATM/ATR checkpoint con-
trol. Although TP53 was frequently mu-
tated in each of these pathways, many
other genes were also implicated, sug-
gesting that multiple mechanisms may
exist for dysregulation of these pathways
in breast cancer. Additionally, seven
members of the RAN regulation pathway
were found to be mutated in breast can-
cers, while none were mutated in colo-
rectal cancers. The RAN pathway mem-
bers included proteins involved in
nuclear transport such as NUP133,
NUP214, NUP98, and KPNA5. NUP98
and NUP214 have been shown to be tar-
gets of translocation in several human
malignancies (Kau et al. 2004; Nakamura
2005), but no intragenic mutations of
these genes have been previously ob-
served in any cancer. In addition, a
number of pathways were detected that
were related to groups identified using
other approaches. These included ABC
transporters, which were identified
through domain analyses, and the urea
cycle pathway, which was identified
through the functional group approach.

Integrative analysis

We next integrated the results obtained
from the different system-level analyses
described above. Although it is not pos-

sible to directly compare these disparate groups (e.g., one cannot
compare pathways to protein domain groups), one can examine
the overlap among the genes belonging to the groups identified
through the different analysis modalities. Comparisons of these
data, including the set of CAN-genes are shown in Figure 5 and in
Supplemental Table 4, A and B. Overall, a large fraction (64% and
77%) of the genes in breast and colorectal cancers were uniquely
identified by one of the approaches used. These results demon-
strate the value of a multidimensional analysis, as each method
can identify features that are missed by others. Conversely, the
intersecting regions of the different dimensions can point to spe-
cific genes that may be of interest because they are implicated by
several criteria. For example, in breast cancer, TP53 and SPTAN1
were identified to be significant in all five dimensional analyses,
and 12 other genes were significant by four methods; in colorec-
tal cancer, five genes lie at the intersection of four of the five
analyses, including TP53, EPHA3, EPHB6, LRP2, and IRS4. Exam-
ining the specific groups that identify these and other genes to be
enriched may provide insight into new combinations of ways in
which these genes may be involved in tumorigenesis.

Figure 3. Interaction among proteins mutated in breast and colorectal cancers. Each node repre-
sents a mutated protein that is colored according to Cancer Mutation Prevalence (CaMP) Score, and
each line represents an interaction confidence. CAN-genes identified by Sjöblom et al. (2006) have a
CaMP score >1 and are colored in orange and red. The genes are placed within cellular compartments
as annotated in Gene Ontology.
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Discussion

Interpreting the large and complex datasets that arise from ge-
nome-wide mutational analyses of cancer is challenging. Given
the improvements in bioinformatics and sequencing technolo-
gies, we expect that many such projects will come to fruition over
the next several years. In the first study of this type, Sjöblom et
al. (2006) primarily focused on individual genes and attempted
to identify those whose mutation frequencies reflected rates that
were higher than the passenger mutation frequencies. This initial
analysis was unable to discern important genes that were mu-
tated at relatively low frequencies and did not analyze relation-
ships among the mutated genes. The multidimensional analysis
performed herein was designed for just these purposes. While the
initial study identified individual genes that were mutated, this
current analysis identifies pathways, functional groups, and in-
teracting networks that are mutated in colorectal and breast can-
cers. Although our analyses are at present incomplete and depend
on the fidelity and extent of current annotation databases, several
conclusions have already begun to emerge from these studies.

The first is that the distribution of mutations observed in
the Sjöblom et al. (2006) study is clearly nonrandom. This was
initially suggested by the overall number of mutations observed
and the prevalence of mutations in specific genes. In this multi-
dimensional analysis, we have identified 51 protein domains, 25
functional groups, and 53 pathways that are enriched for somatic
mutations. The Group CaMP and CaMP GSEA approaches used
to delineate these gene groups were performed in a rigorous man-
ner, requiring that both the fraction of genes within a particular
group and the number or distribution of mutations be higher
than what would be expected in the absence of selection. As the
Group CaMP studies are sensitive to the passenger mutation
prevalence, we performed our analyses using the most conserva-
tive estimate available for this prevalence by assuming that all
mutations detected in the Sjöblom et al. (2006) study were sim-
ply passengers. This approach is clearly an overestimate of the
true passenger mutation frequency because it includes mutations
of genes that play a causal role in tumorigenesis as well as true
passenger mutations. Nevertheless, this process ensured that the
groups identified in this study were statistically significant even

if the passenger mutation rate was
higher than estimated by previous ex-
perimental studies.

A second conclusion is that there is
substantial value in examining these
datasets from different dimensions. En-
richment in protein domains reveals
groups of highly related proteins, each
of which may be mutated at low levels.
Although there is a clear relationship be-
tween sequence and function, analysis
of enriched functional annotation can
allow for abstraction of important bio-
logical processes shared by disparate pro-
teins that may not be similar on a se-
quence level. Examination of protein–
protein interactions can provide a more
global view of networks that are en-
riched for mutations. Finally, pathways
reveal organizing structures that may
not be determined from the other three
dimensions. Together, these four

complementary views can provide a global view of mutated gene
groups and processes.

What are the gene groups and processes that are enriched in
these cancer types and what do they tell us about the mecha-
nisms underlying tumorigenesis? For both tumor types, our re-
sults pointed to the importance of alterations in intercellular
interactions. These included proteins with extracellular domains
involved in adhesion (e.g., fibronectin and cadherins), func-
tional groups involved in cell adhesion and extracellular matrix
generation and biogenesis, and pathways implicated in cell–cell
communication. A multitude of mutated genes are contained in
these groups and are delineated in Supplemental Tables 1–3.
These observations are generally consistent with the hypothesis
that in order for tumor cells to proliferate and invade, they must
alter their adhesion dependence to other cells and to the base-
ment membrane and escape control by contact inhibition
(Gupta et al. 2007).

The enriched groups and pathways also suggested that cer-
tain aspects of intracellular signaling, cell cycle control, and me-
tabolism may be important for tumorigenesis. Two known sig-
naling pathways, involving AKT and ATM/ATR, were enriched in
both colorectal and breast tumors, reflecting the important role
these play in these tumor types (Vogelstein and Kinzler 2004).
However, many of the remaining groups and pathways were spe-
cific to one of the tumor types, suggesting that there may be
distinct cellular processes underlying breast or colorectal cancer.
This is in part exemplified by the dramatic differences of the
number and type of interacting mutant proteins present in either
breast or colorectal cancers (Fig. 3). For colorectal cancer, such
groups included MAD domain-containing proteins, ephrin re-
ceptors, metalloproteases, and the TGF-beta and WNT pathways.
The latter two of these are consistent with known tumor-related
signaling pathways in colorectal cancers (Vogelstein and Kinzler
2004). While the function of metalloproteases and ephrin recep-
tors remains to be further elucidated, one intriguing possibility is
that these proteins may be related to the late stage of the tumors
examined. All of the colorectal tumors examined in the Sjöblom
et al. (2006) study were derived from metastatic lesions, and ex-
pression changes (but not mutations) of metalloproteases and
ephrin receptors have previously been associated with late stage

Figure 4. Comparison of mutation enrichment in cellular pathways using complementary statistical
approaches. Venn diagrams show the number of pathways identified from four different databases in
breast (left) and colorectal cancers (right) using CaMP GSEA and Group CaMP approaches. Each circle
represents one pathway and is colored according to the database it belongs to. Pathways that were
enriched for mutations and which were filtered for an increase in the number of genes using the �2 test
are shown in tan or pink. Blue and dark tan areas represent pathways that were excluded using the �2

filter (for additional details, see Methods).
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tumors (Deryugina and Quigley 2006). Breast tumors, on the
other hand, demonstrated an enrichment of mutated genes in-
volved in BRCA1 and BRCA2 DNA repair processes, nuclear and
cell-surface transporters, urea and arginine biosynthesis, ATPase
and GTPase activity, and PPAR signaling pathways. None of these
gene groups, except for BRCA genes, had been definitively linked
to breast tumorigenesis and raise interesting hypotheses about
the role of these genes in tumor development and progression.
For example, the mutations in the urea pathway affected four
proteins (ACY1, ASL, CPS1, and OTC) that impact directly or
indirectly on the production ornithine, a key precursor of poly-
amine synthesis (Casero and Marton 2007). As polyamines have
substantial effects on cellular proliferation and apoptosis, muta-
tions of this pathway may represent a novel mechanism of poly-
amine dysregulation in human cancers.

Finally, the results lead to a deeper understanding of the
mutational data and its implications for neoplasia. In the
Sjöblom et al. (2006) study, it was noted that there were a great
number of genes mutated in each tumor and that the genetic
alterations in tumors of the same type were quite hetero-
geneous. Thus, no two breast cancers shared more than a few
mutated genes. This heterogeneity may indeed account for the
large biologic differences among breast cancers noted by clini-
cians, and suggests that a large number of novel therapeutic
approaches will be needed to combat these cancers. In con-
trast, our studies suggest that, though the precise genes mu-
tated in different cancers are heterogeneous, there are a more
limited number of genetic groups and pathways through
which these genes act. Thus, the complexity at the gene level is
likely to be substantially reduced at the pathway level. Future
work will be needed to fully elucidate how the gene groups iden-
tified herein operate to initiate or accelerate cancerous growth.
However, one can at least envision development of therapeutic
strategies that inhibit downstream components of a relatively
small number of pathways and that would be applicable to a
large number of patients. For this vision to be realized, additional
sequencing studies as well as more systems biologic analyses,
coupled with functional studies of the mutated genes, will all be
essential.

Methods

Genomic sequence similarity calculation
The nucleotide and amino acid sequences of all 14,795 CCDS
entries were downloaded from NCBI (ftp://ftp.ncbi.nlm.nih.gov/
pub/CCDS/current) according to the March 2, 2005 release based
on the 35.1 genome annotation build. Using formatdb, we cre-
ated a CCDS blast database and analyzed each of the CCDS en-
tries using blastp with a minimum E-value cut-off of 0.05 and a
score of 100. In total, 1639 and 2118 sequences for breast and
colon, respectively, were identified and visualized with Cyto-
scape 2.3.1.

Protein domain comparisons
The InterPro database release 13.0 was downloaded in August
2006 (http://www.ebi.ac.uk/interpro/project_outlines.html) and
cross-referenced with the CCDS entries. In total, 12,781 CCDS
IDs matched one of 4151 IPR domains. We identified all domains
contained within the 1149 mutant genes identified, considering
all transcripts of these genes.

Significance of gene sets

Group CaMP
For each group of genes we determined the total number of mu-
tations observed for the tissue of interest, as well as the number
of base pairs that were successfully sequenced. We then com-
puted the P-value as the probability of a group having at least as
many mutations as were observed, given the numbers of base
pairs sequenced and the background passenger frequencies, us-
ing the binomial distribution in R (http://www.r-project.org).
The background passenger frequencies were conservatively esti-
mated as the total numbers of mutations observed in each tumor
type in Sjöblom et al. (2006) divided by the total number of base
pairs sequenced in the study (i.e., assuming that all of the mu-
tations observed were passengers). The P-values were then cor-
rected for multiple comparisons according to the method de-
scribed by Benjamini and Hochberg (1995) with an FDR of 10%.
The Group CaMP score is the negative log of the corrected P-
value.

CaMP GSEA
We also identified gene sets that were statistically significant in
their distribution of CaMP scores (CaMP GSEA) when compared
with the whole CCDS set. For each gene, we calculated the CaMP
score as described previously (Sjöblom et al. 2006). First, for each
of the seven predefined mutational contexts, we computed the
probability of observing the number of mutations found using
the binomial distribution and the passenger mutation rate. We
took the product of these values and divided by the relative rank
of this statistic. Using the CaMP score as a metric, we imple-
mented the GSEA algorithm using the R statistical environment.
In a list of all the mutated genes sorted by CaMP score, we com-
pared the ranking of the set of genes that contained each domain
with those that did not, using the Wilcoxon test, as implemented
by the Limma package in Bioconductor (Smyth 2005). Then, the
statistical significance of deviation from the null hypothesis of
random distribution was calculated and corrected for multiplic-
ity by the Benjamini-Hochberg algorithm (Benjamini and Hoch-
berg 1995) with an FDR of 10%.

For the groups identified by either the Group CaMP or
CaMP GSEA approaches, we further focus on those that were also
enriched for an increased number of mutant genes. For each

Figure 5. Comparison of genes annotated though different mutation
enrichment classification methods. Five-way Venn diagrams (Grünbaum
1975) show the number of genes annotated through the indicated meth-
ods for breast and colorectal cancers. The “Gene Mutation Enrichment”
set are the CAN-genes defined by Sjöblom et al. (2006). Each region
indicates the number of genes that are detected by the different analyti-
cal methods, and is colored according to the number of methods that
identify those genes. The genes detected by each classification method
are listed in Supplemental Table 4, A and B.
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group, we computed the total number of genes observed to be
mutated and sequenced, taking into consideration multiple
CCDS entries for some genes. For each group, the expected num-
ber of mutated genes was calculated to be the product of the
number of sequenced genes in the group and the proportion of
genes mutated in the entire study. Although this is a post-test
filter and not a test in itself, we report a P-value calculated using
the Pearson �2 test in the R statistical environment.

Functional annotation and Gene Ontology
All mutated genes for both colorectal and breast cancers were
categorized to general functional categories and visualized using
Osprey 1.2.0.

Biological process and molecular function categories were
obtained from the GO Consortium website (http://www.
geneontology.org). These contained 11,295 biological processes
and 7445 molecular functions, as of August 2006. The cross-
reference to CCDS entries resulted in 22,705 and 26,430 assign-
ments, respectively. For each GO category, similar calculations
were performed for the total number of mutations observed and
the total number of base pairs sequenced, as described above for
the protein domains. The Group CaMP and GSEA CaMP scores
were calculated as described above.

Predicted protein–protein interactions
Predicted protein–protein interactions in humans were down-
loaded from the Online Predicted Human Interaction Database
(OPHID). As of August, 2006, the database contained 49,008 in-
teractions involving 10,682 proteins. CCDS name translation
was performed with both RefSeq and SWISS-PROT identifiers as
well as via manual curation. Protein–protein interactions be-
tween genes mutated in either cancer type were abstracted. In
total, 196 and 134 interactions (involving 80 and 59 genes) were
identified in breast and colorectal cancers, respectively.

Cellular component data was obtained from Gene Ontol-
ogy. As of August, 2006, 1802 cellular component terms were
available. For network visualization, we first generated the initial
network with Cytoscape 2.3.1. Each individual gene was then
placed into an appropriate cellular component based on the
Gene Ontology data.

Molecular pathways analysis
Pathway assignment data were downloaded from the KEGG
(Ogata et al. 1999), Invitrogen iPath (http://escience.invitrogen.
com/ipath), BioCarta (http://www.biocarta.com), and sigPath-
way databases (http://www.chip.org/∼ppark/Supplements/
PNAS05.html). For KEGG, we used release 39.0 downloaded in
August, 2006, which included 41,689 pathways generated from
303 reference pathways. We used NCBI gene IDs to cross-
referencing these pathways to CCDS genes, resulting in 7787
assignments. For iPath, we used the online interactive tool to
obtain 171 signal transduction and 54 metabolic pathways in
August 2006. We identified 4027 assignments of CCDS genes to
at least one of the iPath groups. For sigPathway and BioCarta, we
used version 1.1.4 from April 2006. We specifically used the 50
pathways identified as humanpaths and 308 pathways identi-
fied with BioCarta. In total, 378 and 350 assignments were
made to sigPathway and BioCarta. The Group CaMP and GSEA
CaMP scores were calculated as described above in the Methods
section for the protein domain comparisons to identify cellular
pathways that were enriched for mutations in breast or colorectal
cancers.
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