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Prediction of Cell Type-Specific Gene Modules:
Identification and Initial Characterization of a Core
Set of Smooth Muscle-Specific Genes
Sven Nelander,1 Petter Mostad,2 and Per Lindahl1,3
1Department of Medical Biochemistry, Göteborg University, SE 405 30 Gothenburg, Sweden; 2Department of Mathematical
Statistics, Chalmers University of Technology, SE 412 96 Gothenburg, Sweden

Genes that are expressed in the same subset of cells potentially constitute a module regulated by shared
cis-regulatory elements and a distinct set of transcription factors. Identifying such units is an important entry point
to the molecular study of cell differentiation. We developed a general method to classify cell type-specific genes from
expressed sequence tag (EST) data, and we optimized it for identification of smooth muscle cell (SMC)-specific genes.
Expression profiles were derived from the quantitative distribution of EST data in mouse, and genes were classified
based on their profile similarity to known reference genes, in this case smooth muscle myosin heavy chain. A large
majority (>90%) of known SMC-specific genes were identified, together with novel candidates. Extensive
experimental validation confirmed SMC-specific expression of candidates, for example, lipoma preferred partner
(LPP) and a novel SMC-specific putative monoamine oxidase, SMAO. Our method performed considerably better
than other computational methods in an objective cross validation comparison. The total number of SMC-specific
genes is estimated to be ∼50.

[Supplemental material is available online at www.genome.org. A program package, uni_extract, for extraction of
data and data preparation, and a MATLAB program package, QRISP, for data transformation, probability
estimation, cross validation, and visualization of data, is available at http://cbz.gu.se/Lindahl/QRISP. A gene
expression pattern prediction server will be available at www.qrisp.com.]

A principal aim of modern developmental biology is to under-
stand the differentiation of cell lineages in molecular detail.
Regulation of cell type-specific genes is frequently used as a mo-
lecular model of cell differentiation. From a systems perspective,
it is therefore interesting to identify complete sets of cell type-
specific genes, and ask whether the same or different pathways
regulate the correlated expression of such sets. The hierarchy of
transcription factors that control expression of contractile pro-
teins in skeletal muscle serves as one of the better understood
molecular prototypes of mammalian cell lineage determination
(Pownall et al. 2002), and comparative analyses of cis-regulatory
elements indicate a common mechanism for several marker
genes (Konig et al. 2002; Wasserman et al. 2000). Less is known
about smooth muscle cells (SMCs). There has been considerable
progress in mapping cis-regulatory elements required for expres-
sion of SMC-specific proteins (Mack et al. 2000; Chang et al.
2001; Manabe and Owens 2001a,b; Strobeck et al. 2001), but the
presumed SMC-specific transcription factors that bind these ele-
ments have not been identified. Shared cis-regulatory elements
(CArG boxes) in SMC marker promoters, in combination with
correlated developmental onset of gene expression of some SMC
markers, argue that there may be a modular regulation of the
SMC genes. Still, the number of known SMC-specific genes is
rather small, which limits the scope of molecular investigation,
and SMC marker gene regulation has been studied from a single-
gene perspective rather than by systematic side-by-side compari-
son. The present project was initiated to identify a near complete

set of SMC-specific genes to serve as an entry point for a system-
oriented analysis of SMC-specific transcriptional regulation.

To identify SMC-specific genes is technically challenging.
The broad tissue representation and the tight association be-
tween SMCs and other cell types make experimental screening
difficult. SMC samples must be compared with a wide range of
tissues, preferentially free of vasculature, to claim cell type speci-
ficity. In vitro experiments are of limited relevance because the
cells are plastic and adopt a fibroblast appearance when cultured
(Schwartz et al. 2000). The present work explores the potential of
computational identification of SMC-specific genes from ex-
pressed sequence tag (EST) data as an alternative to experimental
approaches.

Bioinformatic cell type specificity screens have been re-
ported for a range of cells such as endothelial markers, colon
cancer cells, and cardiac muscle (Wang et al. 2001; De Young et
al. 2002; Huminiecki et al. 2002). Existing protocols for relating
EST detection to cell type-specific expression of genes, such as
keyword searches (Schuler 1997), and Digital Differential Display
(Scheurle et al. 2000), rely on a well-characterized or obvious
relationship between the expression pattern of interest and the
EST libraries under study: Heart-specific genes are present in
heart-derived libraries and absent from others, et cetera. The re-
lationship between gene expression and library representation is
less obvious in the SMC case, and more sophisticated analysis
tools are therefore required.

An alternative approach for classification of EST data is to
perform a multivariate analysis of expression profiles (a set of
measurements of a gene’s transcript abundance across a range of
biological situations). Ewing and co-workers (Ewing et al. 1999;
Ewing and Claverie 2000) have demonstrated the potential of
unsupervised clustering of quantitative EST data in their analysis
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of the rice genome. We have optimized this approach and intro-
duced a classification procedure that allows cell type-specific
genes (e.g., SMC markers) to be discriminated from nonspecific
genes. The key step in the optimization is an objective cross
validation of alternative feature extraction methods (alternative
ways to construct expression profiles) and alternative distance
metrics (alternative ways to measure expression profile similar-
ity).

The optimized procedure identified SMC-specific genes
from mouse EST data with 99% specificity at 94% sensitivity.
Extensive validation by in situ hybridization (ISH) confirmed
that predictions of novel SMC marker genes were correct. Fur-
thermore, the classification procedure outlined a module of ∼50
SMC-specific genes in the genome, also in agreement with the
ISH data.

In conclusion, the present work conceptually links profile-
based EST analysis with classification/supervised learning and
demonstrates its combined use in detecting modules of genes
that are expressed in specific cell types with complex tissue rep-
resentation. Classification, as opposed to cluster analysis, results
in testable hypotheses on cell type specificity, which can be ex-
perimentally validated in a nonambiguous manner at success
rates that can be estimated in advance.

RESULTS

Quantitative Expression Profiles Generated From Public
EST Data Discriminate SMC-Specific Genes
The mouse UniGene data contain 2.7 million ESTs from 639
different libraries (Fig. 1), and thus constitute an enormous
source of transcript distribution information. SMCs are repre-
sented in practically all tissues, but in substantially different pro-
portions. We therefore asked whether the differential presence of

SMCs between organs is sufficient to affect the library distribu-
tion of ESTs, and to generate an SMC-specific signature.

Expression profiles were constructed from the distribution
of ESTs for each gene across the 639 libraries. The profiles of two
known SMC markers, smooth muscle myosin heavy chain (SM-
MHC) and leiomodin 1, showed a high degree of correlation,
indicating that profiles for SMC-specific genes might have char-
acteristic features (Fig. 2). The correlation was primarily due to
abundant transcript detection in urinary bladder and colon li-
braries. However, the degree of correlation between these two
markers was clearly dependent on the type of expression profile
that was constructed from the EST data (definitions of different
data construction principles are given in Methods). Profiles that
were derived from raw data (number of detections/library) and
from transformed data (statistic estimate of gene representation/
library) correlated very well. Profiles derived from frequency data
(number of detections/library, normalized for library size) and
binary data (presence/absence of gene/library, data not shown)
did not show convincing correlation.

Detection of SMC-Specific Gene Expression Can Be
Defined as a Classification/Supervised Learning Problem
The pair-wise correlation between SMC marker profiles implied
that SMC-specific genes might be detected by a classification (su-
pervised learning) method. In such methods, user-provided ex-
amples (“training data”) are used to predict the properties of
novel objects. In this case, existing examples of known SMC
markers, and examples of genes known not to be SMC markers
can be used to estimate the probability for an undocumented
gene to be SMC specific. We therefore developed a classifier that
was optimized with respect to SMC marker identification. The
classification has three components: (1) derivation of expression
profiles from EST data, (2) computation of profile distances to a
reference marker, and (3) estimation of probabilities (based on

training data) for genes to have the same expression
pattern as the reference marker.

Systematic Evaluation of Alternative
Classification Methods Established an Optimal
Protocol for SMC Marker Prediction
To maximize sensitivity and specificity of discrimi-
nation, alternative technical parameters were sys-
tematically compared: The two parameters with the
greatest impact on classification performance were
(1) the type of profile and (2) the choice of distance
metric.

The different profile types (raw, transformed,
frequency, and binary) and the different distance
metrics (permutation testing, Pearson’s correlation
coefficient, covariance, Fischer’s test) are defined in
Methods. In an informal evaluation, we ranked genes
according to profile similarity to the SM-MHC gene
and registered the ranks of 10 positive controls using
different methods. This revealed a striking depen-
dency on technical parameters (Fig. 3A). In a formal
evaluation, we again used SM-MHC as the reference
marker and estimated the probabilities for genes to
be SMC specific using logistic regression fitted by un-
biased training data as defined in Methods. This re-
turned the estimated probability for different genes
to be SMC specific, on the basis of alternative meth-
ods. In an optimal classification, the estimated prob-
ability for negative controls should be 0, and the es-
timated probability for positive controls (SMC mark-

Figure 1 Tissue sources represented in UniGene data. Based on tissue source informa-
tion for the 639 mouse EST libraries, libraries were grouped into different organ systems
(A). Embryo, whole embryo or part of embryo regardless of stage; part of body, com-
binations of adult organs or body parts; culture, cell culture, including stem cell libraries.
Based on this grouping, the relative contribution from each tissue to the 2.7 million ESTs
in the data was calculated (B).
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ers that were not included in fitting of the regression curve)
should be 1.

Raw data and Pearson’s correlation performed best, estimat-
ing the average SMC marker to 37% probability and the average
nonmarker to a 1% probability (Fig. 3B,C). The use of binary
profiles and the Fischer metric correspond to the hitherto best
performing established method, GBA (Walker et al. 1999). How-
ever, this method only had an 8% probability for the average
SMC marker and a 1% probability for nonmarkers, demonstrat-
ing that GBA should not be applied to SMC marker prediction.
The informal evaluation (Fig. 3A) showed that, when using GBA,
the top 3100 genes would need to be screened in order to detect
∼90% of the known SMC-specific genes, compared to the top 280
genes when using raw data and Pearson’s correlation. The formal
sensitivity/specificity relationship for raw data and Pearson’s cor-
relation on a test set was 99% specificity at 94% sensitivity, and
this method was used in all subsequent experiments. Predicted
genes and probability estimates are shown in Table 1.

In Situ Hybridization Confirmed SMC-Specific
Expression of Candidate Genes and Revealed Systematic
Patterns of Ectopic Expression
Forty-six genes with estimated probabilities between 1% and
77% were selected for further validation using ISH. The selection
was fairly randomized with a slight bias toward abundant genes,

genes with “interesting features,” and previously undocumented
genes. The established SMC markers SM-MHC, �-smooth muscle
actin (ASMA), vinculin, and smoothelin were included to provide
reference data. ISH was performed on mouse late embryonic
(E17.5) sagittal sections, which allows for a wide range of organs
to be screened on one slide. Embryonic expression is also rel-
evant to validate a potential role in SMC development. ISH re-
sults were informative (presence of signal and low background)
for 29 genes including the four controls. The result was used to
classify the genes into three groups:

1. SMC marker group (four controls and five candidates). This
group contained genes with an expression pattern highly con-
cordant with expression of the SMC marker controls (Figs. 4,
5; Table 2). The SMC marker group displayed reoccurring pat-
terns of ectopic expression in specific locations (Fig. 6).

2. SMC marker-related group (five candidates). This group con-
tained genes with an SMC marker-concordant expression pat-
tern but with additional atypical ectopic expression in a lim-
ited set of other locations (Fig. 7).

3. Genes with other expression patterns.

None of the known markers were strictly confined to SMCs but
were to variable extents also expressed in cardiac and skeletal
muscle (Figs. 4, 6). The markers were further expressed in some
nonmuscle cells (SM-MHC, ASMA, and smoothelin stained sub-

Figure 2 Examples of EST-derived expression profiles for two SMC-specific genes: SM-MHC (103 detections in UniGene, red curve) and leiomodin 1
(28 detections in UniGene, blue curve). X-axis, The 639 mouse EST libraries in arbitrary order; Y-axis, EST-derived expression profiles according to
definitions in Methods. For the raw and transformed profiles, the two SMC-specific genes have related profiles (correlation 0.65 and 0.76, respectively).
Transcripts are primarily detected in certain urinary bladder and colon libraries. The two genes do not correlate in the frequency data, which also contain
signals from unexpected organs such as the hypothalamus.
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mandibular gland epithelium; Fig. 5), ASMA and smoothelin
were expressed in hair follicle dermal sheets, and ASMA finally
was expressed in portions of the central nervous system (CNS).
The CNS expression was not confined to vascular SMC.

The candidate genes were similarly expressed in all muscle
lineages and in some additional cell types (Figs. 4, 5, 6; Table 2).
Genes that recapitulated the SMC marker typical pattern of ec-
topic expression in submandibular glands, hair follicle dermal

sheaths, and regions in the CNS were classified as novel SMC
markers (Fig. 5; Table 2). Genes with additional expression in
atypical ectopic sites, for example, brown fat, bladder epithelium,
and pancreas epithelium, were classified as SMC marker related
(Fig. 7; Table 2).

Candidate genes that were classified to group (3) displayed
the full spectrum of patterns from borderline cases of SMC-
specific expression to ubiquitous expression. Approximately half

Figure 3 Systematic evaluation of alternative data types and distance metrics with respect to prediction of SMC-specific genes. R, transformed data;
D, raw data; p, frequency data; B, binary data. Roman numerals indicate different distance metrics. I, Permutation; II, Pearson’s correlation; III,
covariance; IV, GBA (Walker et al. 1999). Euclidean distance was also evaluated, giving nonspecific results (not shown). For full definition of terms, see
Methods. (A) Nearest neighbor searches were performed on all genes with at least five ESTs in UniGene (n = 29,812). Genes were ranked according to
their profile similarity to SM-MHC. Ranks for 10 SMC markers are displayed on the Y-axis as box blots. Boxes, Central 20th to 80th percentiles; whiskers,
the full range of observations. (B) Alternative methods (combinations of data type and distance metric) were evaluated with a logistic regression model.
This model was used to compute probabilities for genes to be SMC markers based on their profile distance to SM-MHC. P(SMC|positive) denotes the
model average probabilities for positive controls to be SMC markers, and (SMC|negative) denotes the corresponding probability for negative controls.
Models were first compared group-wise using the full test set. This identified three preferred models (R-I, R-II, and D-II). These three models were then
compared in a pair-wise fashion. To avoid bias, subsets of the reference gene set were used (see Methods). The preferred method was data = D,
distance = II (Pearson’s correlation), with expectations 0.37 for the markers and 0.02 for the nonmarkers. (C, D) Logistic regression curves for raw
data/Pearson’s correlation (C) and GBA (D). Triangles, Known SMC markers (probability = 1); crosses, genes with other expression pattern (probabil-
ity = 0); curve, estimated relationship between a gene’s correlation against SM-MHC and its probability to be an SMC marker.
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of these genes showed some degree of
SMC selectivity (data not shown). Three
genes, finally, displayed restricted, but
muscle unrelated, patterns.

The number of genes that experi-
mentally qualified as being SMC markers
was in agreement with the prediction

The Degree of Ectopic Expression
of Candidate Genes Is
Recapitulated in the Profile’s
Distance to SM-MHC
Is there a correlation between the degree
of SMC-specific expression and the dis-
tance to SM-MHC? ISH results were vi-
sualized by plotting SM-MHC profile
similarity on the Y-axis versus gene
abundance on the X-axis (Fig. 8). Gene
abundance was defined as the logarithm
of the total number of EST detections for
a gene in UniGene. The ISH results re-
vealed a logic relationship between the
EST profile similarity to SM-MHC and
the degree of SMC specificity. The ex-
pression in nonmuscle cells gradually in-
creased with decreasing mathematical
correlation to SM-MHC. The SMC
marker group (1) had correlation rang-
ing from 0.43–0.86, average 0.61. The
SMC marker-related group (2) ranged be-
tween 0.52 and 0.57, average 0.54. Fi-
nally, the heterogeneous nonselective
group (3) spread between 0.37 and 0.65,
average 0.49. For genes with >50 detec-
tions, the separation between SMC
markers and nonmarkers occurred in a
correlation interval between 0.4 and 0.6.
Only two low-abundance genes were ex-
perimentally validated; both were classi-
fied in the nonselective group (3). Data
from the literature-based reference set
were distributed in good accordance
with the ISH data. However, the distri-
bution also revealed a number of “false
positives”, that is, non-SMC markers
with high correlation. These were found,
with rare exceptions, in the low-
intensity range.

The Mouse Genome Is Estimated
to Encode ∼50–60 SMC Markers
Probability estimation for genes to be
SMC markers allows for a global estimate
of the total number of SMC-specific
genes (see Methods). We estimated prob-
abilities by logistic regression that was
fitted with the combined ISH and litera-
ture data (regression curve shown in Fig.
3C). Integrating probabilities gave a
model estimate of 56 genes in the mouse
genome that encode SMC markers (stan-
dard error 4.97). Of these, 34 are pre-
dicted to be among the top 161 genes
with a profile correlation above 0.5, of
which 12 are known markers. This indi-

Table 1. Prediction of Smooth Muscle-Specific Genes

Expression Correlation Probability UniGene ID Annotation

105 1.00 0.99 Mm.3153 Myosin heavy chain 11, smooth muscle
174 0.86 0.94 Mm.16562 Actin gamma 2, smooth muscle, enteric
196 0.79 0.85 Mm.2006 Transgelin/SM-22 alpha
49 0.79 0.84 Mm.43921 RIKEN cDNA 4631426E05 gene
68 0.78 0.83 Mm.99349 Svs7
33 0.77 0.80 Mm.95705 Gamma-2 syntrophin
58 0.77 0.78 Mm.3089 ESTs
91 0.76 0.77 Mm.31259 SMAO
31 0.76 0.77 Mm.99224 ESTs
24 0.75 0.75 Mm.46214 Uroplakin 3
57 0.74 0.70 Mm.45481 RIKEN cDNA 1110032A04 gene
292 0.73 0.68 Mm.6712 Desmin
26 0.72 0.66 Mm.4351 Arginine vasopressin receptor 1A
26 0.70 0.58 Mm.100108 RIKEN cDNA 5730414M22 gene
31 0.68 0.50 Mm.152763 Svs3
32 0.66 0.43 Mm.3787 Svs6
344 0.66 0.42 Mm.16537 Actin, alpha 2, smooth muscle, aorta
31 0.65 0.40 Mm.57221 Homeobox B13
27 0.65 0.40 Mm.180124 Leiomodin 1 (smooth muscle)
41 0.64 0.34 Mm.86380 ESTs
29 0.63 0.33 Mm.34359 ESTs
26 0.63 0.32 Mm.89958 MRV integration site 1
54 0.63 0.30 Mm.25722 Purinergic receptor P2X
76 0.62 0.27 Mm.17807 ESTs
22 0.61 0.25 Mm.30933 ESTs
99 0.60 0.24 Mm.4356 Calponin 1
30 0.60 0.23 Mm.88548 ESTs
71 0.59 0.21 Mm.24684 ESTs
219 0.59 0.19 Mm.10661 Solute carrier family 2 member 4
222 0.58 0.19 Mm.34060 RIKEN cDNA 5830475I06 gene
55 0.58 0.17 Mm.45019 Cancer related gene-liver 1
286 0.58 0.17 Mm.28278 Caveolin, caveolae protein, 22 kD
50 0.57 0.17 Mm.27165 ESTs
134 0.57 0.16 Mm.28649 ESTs
189 0.57 0.16 Mm.38877 ESTs
60 0.57 0.15 Mm.23983 ESTs
81 0.57 0.15 Mm.34171 ESTs
43 0.57 0.15 Mm.83243 ESTs
49 0.57 0.15 Mm.12966 Plasma membrane associated protein,

S3–12
284 0.57 0.15 Mm.205997 LPP
34 0.57 0.15 Mm.34461 ESTs
139 0.56 0.15 Mm.22941 RIKEN cDNA 4930435F02 gene
307 0.56 0.14 Mm.36850 Smoothelin
36 0.56 0.14 Mm.85304 Gob-5
147 0.56 0.14 Mm.7342 PDZ and LIM domain 3
51 0.56 0.13 Mm.314 ESTs
31 0.56 0.13 Mm.74658 ESTs
76 0.56 0.13 Mm.119265 ESTs
466 0.55 0.12 Mm.1987 Decorin
26 0.55 0.12 Mm.55337 ESTs
44 0.55 0.12 Mm.87506 ESTs
458 0.54 0.11 Mm.196484 Cysteine rich protein 1
94 0.54 0.11 Mm.1237 Peripheral myelin protein, 22 kD
51 0.54 0.11 Mm.35290 Expressed sequence AI552420
111 0.54 0.11 Mm.136207 Expressed sequence AA986860
66 0.54 0.10 Mm.183030 RIKEN cDNA 5430429D21 gene
52 0.54 0.10 Mm.44235 HNF-3/forkhead homolog 1 like
65 0.53 0.10 Mm.29953 RIKEN cDNA 5430437E11 gene
30 0.53 0.09 Mm.38127 Expressed sequence AI642000
118 0.53 0.09 Mm.27390 ESTs
22 0.52 0.08 Mm.112236 ESTs
253 0.52 0.08 Mm.36769 SLAP
58 0.52 0.08 Mm.31552 ESTs
49 0.52 0.08 Mm.23873 ESTs
… … … …

[88 genes]
… … … …
39 0.43 0.02 Mm.87553 Protocadherin beta 17

(continued)
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cates that a majority of the unknown markers can be identified in
a systematic screen of high-correlating genes.

Quantitative EST Profiling Identified Structural and
Regulatory Genes in Heart and Skeletal Muscle, Retina,
and Lens, Demonstrating General Applicability
The method is stated in a general way and could theoretically be
applied to any tissue or cell type. The only a priori information
required is a marker gene that can be used as discriminator. Ob-
viously, the lack of cell type-specific libraries reduces the resolu-
tion for some tissues: It is not possible to discriminate between
closely associated cell types unless at least one library is enriched
for one of the cells.

We profiled all genes with at least five UniGene detections
(n = 29,812) against a panel of genes with tissue-specific expres-
sion patterns (see Methods and Supplementary Material, avail-
able online at www.genome.org). Examples of predictions based
on skeletal muscle, heart muscle, photoreceptor, and lens mark-
ers are shown in Table 3A–D. Previously known markers for the
respective cell type are consequently clustered at the top of the
lists, thus confirming the accuracy. Fourteen of the top 19 genes
with highest correlation to the cone-rod containing homeobox
gene have a previous record of retina-specific expression. Com-
pared with the SMC case, the Pearson’s correlation coefficients in
this case are higher, possibly indicating less complex expression
patterns for these genes. Several well-documented key regulators
of skeletal and cardiac muscle differentiation were identified
among the structural genes.

DISCUSSION

Concordance Between Mathematical Predictions
and Experimental Results
We have developed a new method for mathematical prediction
of SMC-specific genes. Five SMC markers and five SMC marker-
related genes with selective but not specific SMC expression were
validated by ISH. The proportion of SMC markers versus non-
markers in the experimentally evaluated gene set agrees well with
the a priori estimated probabilities.

ISH offers a resolution and an organ overview that alterna-
tive methods such as Northern blot and RT-PCR cannot match.
Still, classification of genes as SMC specific or not based on ISH is
bound to be wrong sometimes. The screening was performed
solely on embryonic sections and on the subset of organs that
were simultaneously represented on single slides. Technical fail-
ures that result in artefact staining are sometimes mistaken for
ubiquitous expression. We have consciously chosen to be con-
servative in judgments and to classify genes that have an SMC/
muscle selective staining but high background staining as non-

muscle, which might lead to underesti-
m a t i o n o f s p e c i f i c i t y a n d t o
underestimation of the total number of
SMC markers. We have also been careful
not to claim technical failure unless it is
obvious. The most common type of
technical failure was complete lack of
signal. Genes that are SMC specific only
in certain splice isoforms (such as vincu-
lin) may give ISH results that depend on
the choice of probe. Our vinculin probe
consisted of a 3� fragment of the vincu-
lin mRNA, and should in theory not be
able to differ between SMC-specific
(metavinculin) and broadly expressed
vinculin isoforms. Still, our ISH result for

vinculin was highly SMC specific, possibly explained by a domi-
nant contribution of metavinculin at this time point.

Data Quantity and Library Diversity Are the Main
Limiting Factors of Method Performance
The method is formulated in a general way to classify genes ac-
cording to coexpression with a discriminator gene. This classifi-
cation was used to identify cell type-specific markers, but theo-
retically it can be used to predict similarity to any discriminator
gene expression pattern. The potential of the method in any
particular case will depend on three factors: (1) the tissue sources
underlying the data in relation to the expression pattern of in-
terest, (2) the amount and quality of the data, and (3) the analysis
method itself.

Predictions can only be made for cell types present in the
data bank. Similarly, morphological resolution of the method
depends on the presence of tissue- or cell type-specific libraries.
Clearly, if two cell types are present in amounts that have the
same ratio for all libraries, then the method cannot separate be-
tween genes specific for one or the other of these cell types. The
efficiency of finding genes specific for cell type C depends on in
how many libraries, and to what extent, the amount of C varies
in relation to other cell types. It is, however, not necessary to
have libraries containing only C. The sizes, that is, the total
counts, of the libraries where C has a higher proportion cannot
be too small. If they are, then the stochastic noise from the ran-
dom selection of the sequenced tags will overwhelm any signal of
differential expression. For the same reason, the C-specific genes
that are to be detected cannot have too small expression rates in
C compared with the sizes of the libraries where C has a higher
proportion. Thus, the method is more likely to detect highly
expressed C-specific genes than lowly expressed ones.

The current representation of tissues in mouse UniGene li-
braries (see Fig. 1) indicates that our prediction may be biased
toward efficient detection of genes with expression in visceral
and urogenital SMC and less efficient detection of genes that are
preferentially expressed in vascular and pulmonary SMC. This
indicates that the detection of SMC subtype-specific genes may
be problematic with the current data set. However, the intention
in this experiment has been to characterize a core set of general
SMC markers that is present in all subtypes, and not to identify
genes that are specifically expressed in certain subtypes. The Uni-
Gene data are a secondary data set derived from dbEST, a con-
stantly growing public EST database, which indicates that reso-
lution and tissue representation will improve over time. Other
data sets that can be analyzed with the method in its current
design are UniGene data for other species, or SAGE data. Poten-
tially, data from several sources could be combined to enhance
the power of the method. Improvements that could be attempted

Table 1. Continued

Expression Correlation Probability UniGene ID Annotation

25 0.43 0.02 Mm.67539 RIKEN cDNA 4933406D09 gene
25 0.43 0.02 Mm.116986 Secreted and transmembrane 1
216 0.43 0.02 Mm.12842 Vinculin

Top-ranking genes based on profile similarity to SM-MHC. Smooth muscle cell markers underlined.
Likely false positives (the Svs and decorin) in italics. Expression, Number of detections in UniGene;
correlation, Pearson’s correlation in the raw data set (see Methods); probability, logistic regression
probability estimate for a gene to be an SMC marker. For brevity, genes with fewer than 20
detections have been excluded. The logistic regression estimate of the total number of SMC
markers in the list shown is 20.4; standard error 3.06.
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include mapping of SAGE data onto UniGene, addition of pri-
vate-domain EST data to the public set, and cross comparing
predictions versus microarray results. Further, it would be worth
considering combinations of the method presented here with
prediction methods based on other features, such as promoter
sequences.

The libraries included are heterogeneous in terms of sam-
pling depth and construction (sequencing direction, normaliza-

tion, et cetera), which is a potential source of systematic error.
The annotation is another source of error: The one-to-one corre-
spondence between genes and the EST clusters in UniGene can
be questioned.

The predictive power using different data pretreatments and
distance metrics was systematically evaluated. GBA, an estab-
lished method for identification of expression modules, was
clearly not performing well on genes with a more complex tissue

Figure 4 In situ hybridization (ISH) results for selected genes. Expression of control genes. 1, Vascular SMC; 2, intestinal SMC; 3, esophageal SMC;
4, cardiac muscle; 5, lung parenchyma; 6, diaphragm (skeletal muscle); 7, liver. A summary of ISH results is given in Table 2. They are also graphically
depicted in Fig. 8. Intestinal lumen artefact staining is due to endogenous alkaline phosphatase activity (asterisk).
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distribution. Profiles generated from binary data and frequency
data generally performed poorly. Similarly, established distance
metrics such as Euclidean distance and covariance were less suit-
able. With the current data set, we saw no clear benefit in using
statistical transformation or permutation testing (Fig. 3) in com-
parison with simpler approaches such as Pearson’s correlation.
The fact that the size of an EST library (102–105 tags) is small in
relation to the often minute frequencies at which individual
genes are represented in the transcriptome (10�6 to 10�1) indi-
cates that expression levels can only be crudely estimated from
EST data.

Genes differ markedly in their absolute expression level.
Rare transcripts have a low representation in EST libraries, are less
well detected in assays such as ISH and Northern blotting, and
give weak signals with a large experimental error on fluorescence-
based chip assays such as cDNA microarrays. As with any other
method, the EST screening procedure is likely to be more error
prone with rare transcripts. Our definition of expression level is
based on the sum of UniGene detections. In the analysis pre-
sented earlier, we anticipated that any cluster with fewer than
five (arbitrary limit) members was unlikely to give reliable results.
Filtering the data gave 29,812 clusters with five or more mem-

Figure 5 ISH data for genes that were classified as SMC markers. Vascular SMC; 2, intestinal SMC; 3, esophageal SMC; 4, cardiac muscle; 5, lung
parenchyma; 6, diaphragm (skeletal muscle); 7, liver. Intestinal lumen artefact staining is due to endogenous alkaline phosphatase activity (asterisk).

Table 2. Summary of In Situ Hybridization Results

Expression Correlation Probability UniGene ID Annotation IMAGE clone In situ hybridization result

105 1.00 0.99 Mm.3153 Smooth muscle myosin heavy chain 1547017 SMC marker
91 0.76 0.77 Mm.31259 SM-MAO 1166836 SMC marker
344 0.66 0.42 Mm.16537 Alpha smooth muscle actin 1138966 SMC marker
284 0.57 0.15 Mm.205997 LPP 2698658 SMC marker
307 0.56 0.14 Mm.36850 Smoothelin 1162749 SMC marker
147 0.56 0.14 Mm.7342 PDZ and LIM domain 3 332852 SMC marker
29 0.56 0.13 Mm.212349 Myopodin 1617930 SMC marker
253 0.52 0.08 Mm.36769 SLAP 1025661 SMC marker
216 0.43 0.02 Mm.12842 Vinculin 1096898 SMC marker
134 0.57 0.16 Mm.28649 Putative serine protease 5057524 SMC marker-related
76 0.56 0.13 Mm.119265 No annotation 347893 SMC marker-related
94 0.54 0.11 Mm.1237 Pmp22 1121305 SMC marker-related
118 0.53 0.09 Mm.27390 Similar to human myoneurin 1195532 SMC marker-related
58 0.52 0.08 Mm.31552 No annotation 1365251 SMC marker-related
9 0.75 0.75 Mm.156846 Putative myosin ATPase 1137251 Nonselective
10 0.65 0.40 Mm.160140 No annotation 3412898 Nonselective
76 0.62 0.27 Mm.17807 No annotation 1532956 Nonselective
6 0.58 0.18 Mm.31071 No annotation 1052804 Nonselective
34 0.57 0.15 Mm.34461 Putative ATPase 643914 Nonselective
51 0.56 0.13 Mm.314 No annotation 1529589 Nonselective
66 0.54 0.10 Mm.183030 Weakly similar to ankyrin 1494583 Nonselective
77 0.50 0.06 Mm.41387 No annotation 337790 Nonselective
229 0.48 0.04 Mm.28406 unc93 homolog B 86% similarity 1245118 Nonselective
352 0.48 0.04 Mm.184314 Putative dioxygenase 479719 Nonselective
69 0.48 0.04 Mm.45173 Msr2 390123 Nonselective
101 0.47 0.04 Mm.22588 Similarity to human supervillin 949239 Nonselective
214 0.45 0.03 Mm.10211 Entpd5 579841 Nonselective
117 0.41 0.02 Mm.32011 Kelch-related 458907 Nonselective
349 0.38 0.01 Mm.34315 Similar to synembryn 5055713 Nonselective
410 0.37 0.01 Mm.28793 Snap25bp 465348 Nonselective
31 0.65 0.40 Mm.57221 Hoxb13, homeobox B13 1026377 Technical failure
222 0.58 0.19 Mm.34060 No annotation 679316 Technical failure
55 0.58 0.17 Mm.45019 No annotation 2938912 Technical failure
7 0.58 0.17 Mm.139005 No annotation 2780347 Technical failure

189 0.57 0.16 Mm.38877 No annotation 4000106 Technical failure
60 0.57 0.15 Mm.23983 Niban protein 1344864 Technical failure
139 0.56 0.15 Mm.22941 Putative methyltransferase 1449933 Technical failure
7 0.51 0.07 Mm.173134 No annotation 577206 Technical failure

100 0.49 0.05 Mm.196527 Ankyring repeat domain protein 1514780 Technical failure
26 0.48 0.04 Mm.33974 Unc gene homolog 1617070 Technical failure
121 0.44 0.02 Mm.30693 Basic Krüppel-like factor 4 3464873 Technical failure
181 0.43 0.02 Mm.25707 No annotation 1066724 Technical failure
245 0.42 0.02 Mm.29865 Zinc finger domain-containing 425825 Technical failure
80 0.41 0.02 Mm.139238 No annotation 402913 Technical failure
211 0.40 0.01 Mm.28119 Sgpl1 1531669 Technical failure
245 0.37 0.01 Mm.31353 Vps16 gene product 4317642 Technical failure

In situ hybridization validation of predicted SMC-specific genes. Forty-six EST clusters were chosen for validation by in situ hybridization in mouse
E17.5 embryos. Genes were classified as SMC markers, SMC marker-related, nonselective, and technical failure, according to criteria described in
Results. Expression, Number of detections in UniGene; correlation, Pearson’s correlation with SM-MHC in the raw data set (see Methods); probability,
logistic regression probability for a gene to be an SMC marker; IMAGE clone, probe template clone ID (see Methods). These results are visualized
in Fig. 8. The logistic regression estimate of the total number of SMC markers in the list shown is 7.4; standard error 2.1.
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bers, which is in parity to the estimated 30,000–40,000 genes in
mammals.

Lipoma Preferred Partner and Smooth Muscle
Monoamine Oxidase: Two SMC-Specific Genes
With Potential Regulatory Functions
On the basis of protein sequence and previously published data,
two of the newly detected SMC markers stand out as interesting
genes with potential regulative functions in SMC biology: lipoma
preferred partner (LPP) and smooth muscle monoamine oxidase
(SMAO).

LPP
LPP belongs to the zyxin protein family (Petit et al. 1996). The
family members zyxin, Trip6, ajuba, LIMD1, and LPP have simi-
lar structures with a proline-rich domain at the N terminus and
three successive LIM domains at the C terminus. LPP and other
members of the family are shuttled between focal adhesions and
the nucleus in vitro (Petit et al. 2000; Petit et al. 2003). The
significance of the nuclear localization is not clear, but LPP
strongly enhances transcription in a Gal4-reporter system. Previ-
ously published adult human Northern blot data (Petit et al. 1996)
are compatible with smooth muscle-specific expression, although
the connection was not made. The name LPP was motivated by
frequent fusion between LPP and the HMGIC gene in lipomas, in-
dicating a possible role in tumor development (Petit et al. 1996).

Recently, Chang et al. (2003) showed that CRP-1 and 2 act as
adapters between serum response factor (SRF) and GATA4/6 to
form a transcription factor complex that induces expression of
SMC-specific genes such as SM-MHC in vitro. CRP-1 and 2 also
shuttles between the nucleus and the cytoplasm and has been
shown to bind zyxin (Sadler et al. 1992). Hypothetically, LPP is
the endogenous binding partner of the SRF-CRP-GATA complex
in SMC and a coregulator of SMC-specific transcription. Targeted
disruption of the zyxin gene in mice did not generate any obvi-
ous phenotypic changes, possibly due to function overlap be-
tween zyxin family members (Hoffman et al. 2003).

SMAO
The SMAO gene is previously undocumented, and belongs to a
single-gene family. Domain annotation identified a C-terminal
flavin-containing monoamine oxidase (MAO) domain. A Psi-
BLAST search against the National Center for Biotechnology In-
formation (NCBI) protein database showed that the predicted
MAO domain matches MAO domains of numerous other pro-
teins at 20%–35% sequence identity, including mammalian
MAO-A and MAO-B proteins. Mouse SMAO has unique rat and
human orthologs, with ∼90% global protein sequence identity.
On the basis of domain information, it is possible that SMAO
functions as a smooth muscle-specific or smooth muscle-
selective MAO enzyme. As such, it may contribute to the MAO
activity registered in, for example, aortic SMCs (Jaakkola et al.
1999). MAO activity in vascular SMC has been implicated as a
potential source of advanced glycosylation end products (Mathys
et al. 2002). SMC specificity, a potential for pharmacological ma-
nipulation, and coupling to medically relevant processes moti-
vate further studies of this protein.

Potential Roles in SMC Biology for Previously Described
Muscle Proteins and for Pmp22
An unexpected finding was that peripheral myelin protein 22
(Pmp22) showed strong selective muscular expression, with ex-

pression in specific SMC subsets at E17.5 (Fig. 7). This gene has
previously been reported to be expressed at nonneural locations
during embryogenesis, indicating a function not restricted to
neural processes (Baechner et al. 1995). Another member of the
Pmp22 family, epithelial membrane protein 3 (Emp3) is pre-
dicted as one of the extreme top correlators of fast skeletal muscle
myosin light chain (Table 3B). An intriguing hypothesis is that
different members of the Pmp22 family of proteins participate in
muscle processes, in a subtype-dependent manner.

The ISH data demonstrated SMC/muscle selectivity for a
number of genes with existing documentation in cardiac and
skeletal muscle: sarcolemmal-associated protein, PDZ-LIM3 or
alpha actinin-associated LIM protein, and myopodin (Fig. 5).
These may represent a subset of muscular proteins that partici-
pate in SMC processes. Furthermore, the gene matching the clus-
ter Mm. 119265 (Fig. 7) is homologous to the actin-bundling
genes palladin and myopalladin, indicating a role in actin bun-
dling.

Can Upstream Developmental Regulators Be
Extrapolated From a Core Set of Cell
Type-Specific Genes?
This work was initiated to identify a core set of SMC-specific
genes. The expression of these genes is controlled, directly or
indirectly, by transcription factors involved in the developmen-
tal regulation of the cell phenotype. A critical question is
whether upstream regulators coexpress with downstream (e.g.,
structural) genes to such a degree that they may be detected by
EST screening.

A majority of documented SMC-specific genes depend on
SRF for their expression (Mack et al. 2000; Chang et al. 2001;
Manabe and Owens 2001a,b; Strobeck et al. 2001). SRF is not
SMC specific but is expressed more widely in other muscle types
and in other tissues (Chai and Tarnawski 2002). In the SM-MHC-
based search, SRF appears on rank 333, slightly below the top 1
percentile, which is compatible with an expression pattern that is
related to SM-MHC. The idea that upstream developmental regu-
lators may be found among top-ranking genes is supported by
the presence of several well-documented regulators in the top 1
percentile of skeletal- and heart muscle-specific genes: The tran-
scription factors myogenin, MyoD1, and MRF4 are key regulators
of skeletal muscle induction in vivo (Pownall et al. 2002). A
search based on skeletal muscle myosin light chain (UniGene ID
Mm.1000) detected these regulators at ranks 248, 43, and 19,
respectively. A fourth factor, Myf5 (Pownall et al. 2002), was not
represented in the data analyzed. A search based on cardiac myo-
sin heavy chain (UniGene ID Mm.3776) identified the following
developmental regulators at top positions: the mouse tinman ho-
molog Nkx2.5 (Cripps and Olson 2002) at rank 27, the Xin
(Wang et al. 1999) at rank 50, and the transcription factor myo-
cardin (Wang et al. 2001) at rank 80. Other factors indicated in
the same process, such as MEF2C, dHand, eHand, Gata4, and
Gata6 (Cripps and Olson 2002) do not appear in top-ranking
positions in this search, possibly indicating a more general ex-
pression pattern or a temporally restricted heart-specific expres-
sion. For SMC biology, the obvious future prospect of formalized
EST screening is to pinpoint SMC-specific candidate genes with
potential developmental and regulatory functions. However,
SMC-specific expression does not necessarily require SMC-
specific regulators, but may result from combinatorial interac-

Figure 6 Ectopic expression of SMC markers in the CNS, hair follicles, and the submandibular gland. Expression in the submandibular gland
epithelium was confined to the distal tubular system (arrows). 1: CNS, 2: hair follicle dermal sheaths, 3: submandibular glands.
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tions between factors with less restricted expression patterns.
Nkx3–1 and SRF form a complex that has been shown to regulate
the smooth muscle �-actin gene in vitro (Carson et al. 2000).
Similarly, the previously mentioned SRF-CRP1/2-GATA4/6 com-

plex induced the expression of several SMC-specific genes includ-
ing SM-MHC in vitro (Chang et al. 2003). Our EST screening is
optimized to predict genes with correlating expression bound-
aries and may not identify less restricted regulators.

Figure 7 ISH data for SMC marker-related genes. Expression was prominent in muscle cells but was also seen in a range of ectopic sites. 1, Intestinal
SMC; 2, vascular SMC; 3, cardiac muscle; 4, diaphragm (skeletal muscle); 5, liver parenchyma; 6, CNS; 7, submandibular gland; 8, hair follicle (general
mesenchymal expression seen); 9, lung parenchyma; 10, pancreas; 11, liver; 12, airway; 13, brown adipose tissue; 14, urinary bladder. Intestinal lumen
artefact staining is due to endogenous alkaline phosphatase activity (asterisk).
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Support for Extended SMC Properties of Myoepithelial Cells
Starfish-shaped cells in the outer layers of exocrine gland epithe-
lium share features of both epithelium and SMCs. In the mam-
mary gland, these myoepithelial cells have been shown to ex-
press several SMC markers including ASMA, SM-MHC, calponin,
and h-caldesmon (Lazard et al. 1993). Myoepithelial cells in
other exocrine glands have been shown to express ASMA and
calponin (Ogawa et al. 1999). The myoepithelial cells have ultra-
structural features that are typical of SMC and they have been
shown to contract (Redman 1994). Our data show that, in addi-
tion to the previously known genes ASMA and SM-MHC, several
SMC-specific genes are expressed in the submandibular gland
epithelium, including LPP, SMAO, and myopodin. The resolu-
tion of our data is not sufficient to exactly define the spatial
location of the SMC marker expressing cells within the epithe-
lium. It seems likely that they are synonymous with the previ-
ously described myoepithelial cells, or progenitors of these cells.
The growing number of SMC-specific genes that are expressed in

myoepithelium indicates that this cell type should be more con-
sciously considered in studies of SMC differentiation and in stud-
ies of regulation of SMC-specific genes.

Ectopic Expression in Nonmuscle Cells Indicates
Coregulation of SMC-Specific Genes?
Our ISH experiments showed frequent expression of the known
markers in nonmuscle tissues such as the submandibular gland
epithelium. Interestingly, the new markers were detected in the
same ectopic locations. Coordinated expression of a group of
genes is either a result of shared upstream regulators, or an effect
of convergent evolution where unique combinations of cis-
regulatory elements in the individual genes result in overlapping
expression. Large numbers of coexpressed genes and a complex
expression pattern decreases the probability of convergent evo-
lution being the explanatory factor. SMC-specific genes are ex-
pressed in selective subsets of cells originating from all three
germ layers: neural crest-derived vascular SMC, mesoderm-

Figure 8 ISH results in relation to profile similarity to SM-MHC (Y-axis) and to expression level (X-axis). Expression level is defined as the logarithm
of the number of UniGene detections for a gene, and profile similarity is defined as Pearson’s correlation in the raw data set. Gray dots, All 29,812 genes
with at least five UniGene detections; dark upward-pointing triangles, ISH-detected SMC markers; open upward-pointing triangles, ISH-detected SMC
marker-related genes; downward-pointing triangles, genes with a nonselective expression pattern in the ISH experiment; grey upward-pointing
triangles, SMC markers from the literature; crosses, nonselective genes from the literature.
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Table 3. Prediction of Specific Expression in Other Tissues

Expression Correlation ID Annotation

A. Prediction of cardiac-specific genes
270 1.00 Mm.3776 Myosin heavy chain, cardiac muscle, adult
127 0.82 Mm.155714 Myosin, heavy polypeptide 7, cardiac muscle, beta
59 0.82 Mm.10728 Myosin binding protein C, cardiac
389 0.82 Mm.686 Actin, alpha, cardiac
137 0.72 Mm.1529 Myosin light chain, phosphorylatable, cardiac ventricles
58 0.71 Mm.20271 Fibrillin 2
47 0.69 Mm.19961 ESTs, highly similar to atrial natriuretic factor
201 0.67 Mm.632 Troponin T2, cardiac
51 0.66 Mm.46514 Myosin light chain, regulatory A
11 0.66 Mm.89854 A disintegrin and metalloprotease domain 11
6 0.66 Mm.171448 ESTs, weakly similar to mouse forkhead protein O1A
10 0.64 Mm.207070 Mus musculus heart alpha-kinase mRNA, partial cds
43 0.64 Mm.89727 CD8beta opposite strand
5 0.60 Mm.33561 ESTs
5 0.60 Mm.125583 ESTs
5 0.60 Mm.208235 ESTs
6 0.59 Mm.158756 RIKEN cDNA 2610019F11 gene
8 0.59 Mm.27037 ESTs
52 0.59 Mm.17235 Cysteine-rich protein 3
109 0.58 Mm.43 Myosin light chain, alkali, cardiac atria
136 0.57 Mm.6375 Glycogenin 1
7 0.57 Mm.89976 Zinc finger, imprinted 1
11 0.57 Mm.210460 ESTs
5 0.56 Mm.209027 ESTs
12 0.56 Mm.218070 ESTs
36 0.56 Mm.4211 Solute carrier family 8 (sodium/calcium exchanger), member 1
7 0.56 Mm.41974 Nkx2.5/tinman homolog
8 0.55 Mm.116789 Repressor of GATA
5 0.55 Mm.160735 ESTs
5 0.55 Mm.189024 ESTs

B. Prediction of skeletal muscle-specific genes
341 1.00 Mm.1000 Myosin light chain, alkali, fast skeletal muscle
31 0.80 Mm.57093 Calcium channel, voltage-dependent, gamma subunit 1
18 0.77 Mm.18125 Expressed sequence AI118095
28 0.74 Mm.33171 Ankyrin repeat and SOCs box-containing protein 5
51 0.74 Mm.140604 RIKEN cDNA 1110002H13 gene
428 0.71 Mm.214950 Actin, alpha 1, skeletal muscle
124 0.71 Mm.29358 RIKEN cDNA 2700055K07 gene
156 0.71 Mm.29994 Enolase 3, beta muscle
260 0.70 Mm.14526 Myosin light chain, phosphorylatable, fast skeletal muscle
121 0.69 Mm.14546 Troponin T3, skeletal, fast
107 0.69 Mm.20829 Epithelial membrane protein 3
254 0.68 Mm.39469 Troponin I, skeletal, fast 2
43 0.68 Mm.46232 Integrin beta 1 binding protein 2
38 0.67 Mm.4583 Cholinergic receptor, nicotinic, alpha polypeptide 1 (muscle)
41 0.67 Mm.144259 RIKEN cDNA 2310050C09 gene
52 0.65 Mm.31099 ADP-ribosyltransferase 1
152 0.65 Mm.36900 Troponin I, skeletal, slow 1
135 0.65 Mm.1583 Lymphocyte antigen 6 complex, locus C
12 0.65 Mm.11 MRF4
14 0.64 Mm.58214 RIKEN cDNA 2310002L13 gene
78 0.64 Mm.712 Troponin C, cardiac/slow skeletal
22 0.64 Mm.140151 Small proline-rich protein 1B
51 0.63 Mm.125614 Myosin binding protein H
21 0.63 Mm.2810 Cholinergic receptor, nicotinic, gamma polypeptide
27 0.63 Mm.45734 RIKEN cDNA 2310024D23 gene
110 0.63 Mm.878 Lymphocyte antigen 6 complex, locus D
24 0.63 Mm.45137 RIKEN cDNA 2310032K21 gene
34 0.62 Mm.10194 Myomesin 2
272 0.62 Mm.43831 Lectin, galactose binding, soluble 1
19 0.61 Mm.36668 RIKEN cDNA 1110008K04 gene
C. Prediction of retina-specific genes
67 1.0 Mm.8008 Cone-rod homeobox containing gene
92 1.0 Mm.1205 Rod photoreceptor 1
94 1.0 Mm.1372 Phosphodiesterase 6B, cGMP, rod receptor, beta
37 1.0 Mm.78749 Retinitis pigmentosa 1 homolog (human)
418 1.0 Mm.69061 Alpha transducin
23 1.0 Mm.206228 ESTs

(continued)
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derived visceral and vascular SMC, and endoderm-derived sub-
mandibular epithelium. This is a highly complex expression pat-
tern, which gives indirect support for the idea of a coregulated
SMC expression module.

Perspective
This work establishes mathematical prediction as a mode for ex-
panding the molecular repertoire of SMC biology. We have iden-
tified a number of novel markers and estimated the total number
of SMC-specific genes to be ∼50. We anticipate that the remain-
der of these genes can be identified by this methodology. Fur-
ther, comparative studies of cis-regulatory elements, for example,
by phylogenetic footprinting approaches, in the now expanded
core set of SMC markers may provide more information of the
gene networks regulating the differentiation of SMCs.

METHODS

1. Bioinformatics and Statistics

Data Preparation
The aim of the data preparation step is to produce a tag sampling
data matrix on the form Dij = number of detections of gene i in
library j. Mouse UniGene data were downloaded from the NCBI
server (ftp://ftp.ncbi.nih.gov). Other potential sources of tag

sampling data include SAGEdb (Lash et al. 2000) and BodyMAP
(Hishiki et al. 2000). EST counts were extracted from the Uni-
Gene flat files using software that can be downloaded from
http://cbz.gu.se/Lindahl/EST. In the UniGene-derived matrix Dij,
rows correspond to UniGene clusters and columns to cDNA li-
braries. Subsequent analysis was performed with programs writ-
ten in the MATLAB (MathWorks, Inc.) language. Data were fil-
tered to exclude UniGene clusters with fewer than five (arbitrary
limit) members, leaving 29,812 clusters.

EST-Derived Expression Data
The EST data preparation resulted in a matrix on the form
Dij = number of tag detections of gene i in library j. In this matrix,
the sum of D·j = D1j + D2j + … + DNj corresponds to the size of
library j, whereas the sum of Di· = Di1 + Di2 + … + DiM is the num-
ber of detections of gene i in the data (N = number of genes, and
M = number of libraries). Di· can be seen as a global measure of
the abundance of gene i. The analysis is based on interpreting tag
counts as expression levels of genes. The naïve use of the tag
counts in Dij as the expression signal is termed “raw data” (Fig. 2).
A variety of the raw data matrix, Bij, termed “binary data” was
calculated using Bij = 0 if Dij = 0, Bij = 1 if Dij > 0.

Viewing the number of detections in a certain library as
fixed, the distribution of detection events across different genes
can be modeled statistically. A test statistic Rij, termed transformed
data (Fig. 2), was formulated: for each cluster C and each library
L, the R statistic tests whether the proportion of the sequences in

Table 3. Continued

Expression Correlation ID Annotation

62 1.0 Mm.59151 ESTs
830 1.0 Mm.2965 Similar to rhodopsin
85 1.0 Mm.151562 Similar to retinol-binding protein
6 1.0 Mm.172488 ESTs
38 1.0 Mm.194050 ESTs
31 1.0 Mm.1370 Phosphodiesterase 6A, cGMP-specific, rod, alpha
15 1.0 Mm.23793 Cyclic nucleotide gated channel, cGMP gated
38 1.0 Mm.42102 Tubby like protein 1
38 1.0 Mm.41982 Retinoschisis 1 homolog (human)
23 1.0 Mm.39200 Phosphodiesterase 6G, cGMP-specific, rod, gamma
114 1.0 Mm.1276 Retinal S-antigen
29 1.0 Mm.95707 RIKEN cDNA A930007I01 gene
82 1.0 Mm.679 Rod outer segment membrane protein 1
59 1.0 Mm.20422 Neural retina leucine zipper gene
D. Prediction of lens-specific genes
135 1.0 Mm.1228 Crystallin, alpha A
25 0.9 Mm.30374 Crystalline, gamma C
7 0.9 Mm.130559 ESTs
16 0.9 Mm.127184 ESTs, weakly similar to A39757 beta-crystallin
64 0.9 Mm.22830 Crystalline, beta A1
9 0.9 Mm.22861 ESTs
5 0.9 Mm.215166 ESTs
7 0.9 Mm.209940 ESTs
45 0.9 Mm.89477 Crystalline, gamma F
48 0.9 Mm.31625 Major intrinsic protein of eye lens fiber
13 0.9 Mm.95578 ESTs
17 0.9 Mm.86656 Crystalline, beta A2
22 0.9 Mm.168942 BR3B
7 0.9 Mm.180528 ESTs
25 0.9 Mm.138345 ESTs
93 0.9 Mm.127171 Beaded filament structural protein in lens-CP94
5 0.9 Mm.209953 ESTs
26 0.9 Mm.215250 Solute carrier family 7
9 0.9 Mm.137178 RIKEN cDNA E130202I16 gene
11 0.9 Mm.138333 Ras p21 GTPase

Nearest neighbor searches were performed with four different tissue-specific genes: cardiac-specific myosin heavy chain (A), skeletal muscle myosin
light chain (B), the retina-specific cone-rod homeobox (C), and the lens-specific genes crystallin alpha A (D). Top 30 genes are shown in A and B.
Top 20 genes are shown in C and D. On the basis of literature validation, genes specifically expressed in each tissue were identified (underlined in
each list). Expression, Number of detections in UniGene.
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L that are in C could be the same as the corresponding propor-
tion for all other libraries combined. More precisely, a general-
ized likelihood ratio test (Rice 1995) is preformed. Let, PL, respec-
tively, P0, be the probability for a sequence in L, respectively in
all other libraries, to be in C. Let DLC and DL0, respectively D0C
and D00, be the observed counts of sequences in C and out of C
for L, respectively, for all other libraries. Assuming binomial dis-
tributions for the data, the maximum likelihood estimates be-
come

p̂L = p̂0 =
DLC + D0C

DLC + DL0 + D0C + D00

under the null hypothesis

PL = P0,

and

p̃L =
DLC

DLC + DL0
, p̃0 =

D0C

D0C + D00

otherwise. The generalized likelihood ratio test statistic becomes

R = −2 log
p̂L

DLC �1 − p̂L�DL0 p̂0
D0C �1 − p̂0�D00

p̃L
DLC �1 − p̃L�DL0 p̃0

D0C �1 − p̃0�D00
,

with an approximate �2 distribution with one degree of freedom
under the null hypothesis.

We also calculated the proportion of transcripts for each
gene in a library, pij = Dij/D·j, termed “frequency data.”

Distance Metrics
The distance metrics evaluated were Pearson’s correlation coeffi-
cient and covariance. For the binary data, standard correlation
and the use of Fischer’s exact test (Rice 1995) were applied, the
latter corresponding to a previously published method, GBA
(Walker et al. 1999). We also constructed an alternative metric
based on pair-wise permutation testing, and interpretation of the
P value as coexpression. More precisely, for each pair of profiles,
the correlation between them with the libraries permuted in one
of them is computed for a number of permutations. The rank of
the actual correlation in this set of numbers can be interpreted as
a P value for the hypothesis that the profiles are enriched in
unrelated libraries. We interpreted this P value as a distance be-
tween the profiles.

Nearest Neighbor Search and Annotation
Let v(i) be the expression profile for gene i (i.e., row i in one of the
data matrices Dij, Bij, Rij, and pij, discussed earlier). Given one
single training example, b, and a distance metric, the distance
between v(b) and v(1),v(2),…(N) was calculated (N = the number
of genes). Genes were then sorted according to distance and
ranked. From the top-ranking genes downward, genes were an-
notated against the Celera Discovery System and public data-
bases. Genes with sufficient published expression information
were classified as SMC specific or not.

SMC-Specific Reference Gene Set
The following set of smooth muscle-specific genes was used as a
reference set in the evaluation of data treatments and distance
metrics below: alpha smooth muscle actin (ASMA, Acta2),
smooth muscle myosin heavy chain (SM-MHC, Myh11), gamma
smooth muscle actin (Actg2), desmin (Des), leiomodin 1
(Lmod1), SM-22-alpha (transgelin,Tagln), smoothelin (Smtn),
calponin 1 (Cnn1), cysteine-rich protein 1 (Crp1), and vinculin
(Vcl).

Logistic Regression
Logistic regression was used to model the probability of two
genes sharing the same expression pattern, based on profile simi-
larity. The model assumes a linear relationship between profile

similarity x and probability p on the form ln[p/(1�p)] = a + bx,
where a and b are the parameters estimated from “training data”
(i.e., examples of SMC markers and nonmarkers; see following).
Our implementation is based on the MATLAB statistics toolbox.
The model returns pi = the probability for gene i to be an SMC
marker based on the profile distance (xi) to SM-MHC. Parameters
of the model were fitted by literature data, or literature data in
combination with in situ results.

The expectation of the number of genes with the same ex-
pression pattern in a specific set, for example, the top-ranking
200 genes, is given by calculating the sum of pi’s in that set. The
standard error for the expectation is estimated as the square root
of the sum over all pi(1�pi) in the set.

Logistic Regression Training Data
In order to compare alternative methods with respect to classi-
fying genes as SMC markers or non-SMC markers in such a way
as to not benefit one specific method, and because it was unfea-
sible to annotate the full set of genes, the following reference set
of genes was constructed. The 1% top-ranking (n = 289) genes
were identified using seven alternative search methods: 1–6,
nearest neighbor searching against SM-MHC in the raw (Dij) and
transformed (Rij) data matrices using Pearson’s correlation coef-
ficient, permutation testing, and covariance as distance metrics.
7, nearest neighbor searching against SM-MHC in the binary data
(Bij) matrix using GBA. Merging lists and removing redundancies
produced a list of 975 genes. Annotation of this list resulted in a
test set with 14 positive examples (SMC markers) and 134 nega-
tive examples (non-SMC markers, that is, genes documented as
having another expression pattern). In order to include a reason-
able number of negative examples for the remaining
29,812�975 genes, a random subset of 200 genes from this set
was annotated. Nineteen negative examples and 0 positive ex-
amples were found. Based on this, (29,812�975�200)�19/
200 = 2720 genes were randomly selected and used as additional
negative examples.

Comparison of Classification Performance
Using distance data from the seven different methods described
earlier, the literature reference data were analyzed by logistic re-
gression. In a simulation that was repeated 50 times, the 14 posi-
tive and 134 negative reference genes were split into a training
set (75% of the genes in each group) and a test set (remaining
25% in each group). The logistic model was then fitted using the
training data plus additional random negative examples (in order
to avoid overestimation of probabilities due to insufficient an-
notation, see earlier). Model predictions of the probabilities for
genes in the test set to be SMC markers were recorded, and ex-
pectations (mean values) calculated. To further compare meth-
ods in a pair-wise fashion, subsets of reference genes present in
the top 1% list of either method were used.

2. Experimental Validation

DIG-RNA Probe Preparation
Clones in the vector pT3T7-PAC representing candidate UniGene
clusters were purchased from Research Genetics, Inc. Plasmid
midi-preparations were done according to Sambrook et al. (1989)
and plasmids were linearized by restriction digestion with NotI
(sense probes), and EcoRI (antisense probes). One microgram of
linearized plasmid was purified with a DNA cleanup kit (Zymo
Research, Inc). Digoxigenin-labeled cRNA probes were made with
in vitro transcription using T3 (antisense probes) and T7 (sense
negative control probes) RNA polymerase (Roche).

In Situ Hybridization
E17.5 mouse embryos were fixed overnight in 4% PFA in PBS,
and further incubated in 30% sucrose in PBS. Embryos were
mounted in Optimal Cutting Temperature compound (Sakura)
and stored at �80°C. Fourteen-micrometer cryosections on Su-
perFrost plus slides were heated to 55°C for 60 sec and stored at
�80°C. incubated at 37°C for 30 min, and washed 5 min each in
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PBS, PBS 0.1% tween-20, and PBS. Sections were permeabilized
with proteinase K 5µg/mL in TE at 30°C for 30 min, and fixed for
5 min in 4%PFA in PBS. Further steps were performed as de-
scribed at www.roche-applied-science.com/prod_inf/manuals/
InSitu/pdf/ISH_181-188.pdf.
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