Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - contact me Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca on Twitter Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - Lumondo Photography Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - Pi Art Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - Hilbertonians - Creatures on the Hilbert Curve
Thoughts rearrange, familiar now strange.Holly Golightly & The Greenhornes break flowersmore quotes

words: meaningful


In Silico Flurries: Computing a world of snow. Scientific American. 23 December 2017


language + fiction

Dark Matter of the English Language—the unwords

Words are easy, like the wind;
Faithful friends are hard to find.
—William Shakespeare

unwords

This is the biggest list—887,716 English unwords, generated from a list of 479,000 list of English words.

Medically compelling words, defined by some interesting suffixes (e.g. phobia), are presented in the undiseases section.

The list of unwords is filtered to exclude any hyphenation and apostrophes. I've made no attempt to stem the words—for example, to remove what appear to be plural forms.

—3—
abh
baf
cah
daf
ebz
fal
gaa
hea
ibb
jaa
kaa
laa
maq
nai
oaa
paa
qqu
raz
sbz
tah
uea
vae
wel
xni
yab
zaa
—4—
abae
bace
caak
dabn
eacc
faha
gaag
hadr
ibal
jabo
kaah
laep
maal
naan
oaah
paan
qeit
raef
sabm
taak
ubed
vace
wanr
xake
yada
zaac
—5—
ababo
babne
caang
dabna
eable
fadus
gaaba
habwe
iaced
jaacm
kaaab
ladde
maaco
naars
oaads
paabs
qeisa
radlo
sabil
tabal
udsel
vaard
wance
xibne
yebon
zaach
—6—
aachan
babold
caabah
dabnar
eables
facont
gaaada
habway
iacect
jaaday
kaadey
laclic
maakin
nabens
oaagee
paabay
quaben
raldos
sabane
taaque
udnygs
vabara
wamfly
xennis
yeamyl
zaaced
—7—
aamreid
bacadil
caamale
daajarg
eabemic
facomas
gaabags
habwest
iacects
jaabate
kabadis
laclics
maakite
naaquan
oaalake
paaband
qeitage
raemony
sabanal
tabater
ubecide
vabitat
walcama
xeaiate
yazoris
zaacure
—8—
aachtony
bacacree
caamahoo
dabnasas
eabidion
facomate
gaabacte
habwoofs
iaccuate
jaabarly
kabalion
lacloses
maaglive
nabaneer
oaaldiza
paabands
qeinator
ramaness
sabaless
tabakton
uangorin
vabipans
wameless
xeywords
ydneress
zaachner
—9—
abackiest
bacaiting
caambaria
dabnaring
eablishes
facomania
gaaadedia
habwuiter
iacectium
jaadneway
kaahajout
laclidian
maacchial
nabaneest
oabarfort
paachting
qeinatory
raemoning
sabalaryl
taabotzle
udnyglyph
vabippary
wandwares
xendomate
yeesonian
zaachnick
—10—
aadophanic
bacaitings
caamahooed
daakarillo
eabialysis
facolatine
gaabustail
hacchotest
iabiaceous
jaabarness
kaagnation
lacloparia
maagillism
naantalous
oaadrooter
paacrasses
qturegrasm
raemonetts
sabalidase
tabiricate
uaragrable
vabipagean
wandwatark
xickinfert
yebonesses
zaacricker
—11—
aadophacone
bachplasted
caamahooing
dabnationer
eabidiology
facoscophic
gaablerment
hacchotized
ibbicarized
jaacoughter
kabstomment
lacloparian
maagilineal
nabionmaker
oabatrophic
paalligeret
quacidioned
raemonetted
sabalidated
tabisteculi
ubedability
vabipparies
wandwauning
yennishness
zaadishness

—12—
aadophaliums
bachplasters
caamatoscope
dabnariolate
eablansmidal
facolubility
gaablikeness
hadeconwight
iaceulineson
jabification
kabheseeding
lacluntation
maachanavite
nabionership
oabatrophoic
paalodochord
quacefulness
raemonetting
sabalidation
tabjaceously
udnygromissi
vabippareism
wannachanced
yepenousness
zaachnickesh
—13—
abaugescibies
bachanoloical
caamatoscopia
dabnationency
eablamanchium
facontagonite
gaaldrimahedy
hadiaboroness
iachomaniasis
jabimarometer
kabromedizone
lacrusization
maagilinolity
nabitariously
oacantraceous
paanolypaline
quaculiferous
rambreaulowed
sabanucelican
tabjaceousies
uemanociation
vabipparyment
wannachancing
xickingerline
yeryllinemism
zenbhidievine
—14—
abascressionly
bacecification
caamatoscopian
dabnationistic
eacenfigenised
facolubilities
gaarolatically
hacchotization
ibbicarization
jabimarosacily
kaihowfuklench
ladoculsionism
maakursismally
nactualization
oachuloglosynt
paalojiglactry
qansinquirosis
raemoologition
sabracoethygen
tabjaceousness
udnygromoidium
vaceheartedner
wannefictingly
yepfyrotarical
zalaedritellay
—15—
aberyatheberter
badainderedness
caanomaticnatic
dabstologically
eablaneonareous
facophthillahid
gaannificalpous
harrigonishment
ibbicarizations
jaberotherapeus
kabaelesiculous
lamphosescenter
maakuristically
nadastifferling
oachanosophagia
paaminguasechos
quaddractionism
rastarizingness
sabridaboletric
tacdicalization
uemalameisarian
vaceheartedness
wanenolaphonous
ynderapodometer
—16—
abriladothronous
bakoographically
cabalothpization
dactalisingulate
eachematocarpous
fahfoiestheskule
gactiometrically
hadiaboastowning
ibbiographically
jabimoatalophesy
kawaddauriaceous
lamolatrological
maarographically
nadarogenesomacy
ochydramodenomic
paalodorrhaphrin
quaddractimation
rameocrasiferous
saconopasinectic
tachocroytograph
uemanobiological
vegonsculonizing
wandwatalvenwood
yermacographical

—17—
abyranchiatically
baeloazronahumian
cabritometrically
dabsomelscescence
eaticurlegittrial
failonesheeptress
gaarozooenciously
haudacycocetolite
iceiomorphization
jabufedereschilde
kawcayanganasasim
lamphophoraldumal
mabilioistarthine
naniquinpuffyaire
oachryptostecrous
pablinopolization
reaptillification
sabucetarculation
tachyphoschistomy
uemalodeativeness
vegonsculvinalize
whimsellepsitrify
zhonoussitization
—18—
abyinosteracysting
bagoquincification
caccopstherization
dalatosephostomies
eacenfiginembiasis
fantrofingerniness
gaeragotisalgialis
hecalocorpossomies
icemohydrosemuline
jacunceuralization
kaitcholenthythris
leitocartronograph
mabersanthropalous
necrotimoperitoric
oachryptosphorenal
padlandfactiveness
quebunouscephalous
rearmidephenolitic
secrotomyzographic
tachycardometyrous
uenitanisticalness
vellheolinguachure
wanpimmenabilities
yermahvoacetoscoma
—19—
aberyatheldocration
bahandaclionishness
cacethcoalyscraphic
dalanaphorrhachehic
eccolatibidological
fansomosacsimatical
gadiophoressessiric
hadiaboastripangous
icancraticulosality
kelocericostosthene
leliarystallization
mabersanthrological
nercrodyomeberation
odersotenographeral
palanreoncounterite
reconsosentializing
semidezalomolegneal
tagatomotheremotean
unberwrightenedness
velciarcomaryphitis
wenigrassiprulation
—20—
abyogloystelmoiditic
bedaginettaceousness
cachofigarpossometer
dactalismandolitrate
eachtrandrologistric
fedophosphotological
ganroldinocontonosus
henromycorrhhosoidal
iceiolarchythmiamoad
jabimoamordohechmood
kedipercustitalities
macalcromanchamiency
nondenchistentiation
ochyolorenentontagen
palnareoblothiameric
quebrobiogrhecartise
rerepervimestination
scartiometricolastic
talmacoparphocentone
undiffosoliopenazing
velluquithoreterical

—21—
accantosapherochiasis
bemicoloblacontomatic
cachoegnscophystomies
dalificationlessorate
eachygasonaryocarcour
fedorographistrolisan
gadicoarchioscopelous
hedetotypolorphograph
incentularsomoterasia
madychopheniaccuronal
nodaterationalization
octudioflorouphotopia
pechovobbintropnonaic
rechmodechmometrogamo
sabrilostehyricullite
tartosophazoloopellin
undyltracerbandenesol
vereurocerbordohycent
—22—
agniotrophocyclethrine
begipothranmaceraceous
caconsochnecoloscephal
danduocephalomosomeric
egyperyphopothermosate
frachipothostereinitis
gasciocatiosocrasilian
indaaldesitrehenalgian
malcuptisemothanculous
nercroplerographically
oecraumatressesthenibe
peaslothecamonometanic
quebrobiogrhecaryminal
reflesimomolithrosilic
secrotopoidontromastic
tatinochlogacyphologue
undongrensibiliatlemen
—23—
acaraertepitulpeptation
bembenocolbogistromatal
caciceptopomethyleneous
decletopyrrachystolmial
eiyandsceprinainization
galuardicolaristrolcoma
icetoplexistrosthhrenia
lucarucorynchomazintrin
macnchydrogeneumoseable
nonertertabolialization
orchopyrimosalgarositis
pantancoloideculaminone
tanacondrachonomethanic

VIEW ALL

news + thoughts

Curse(s) of dimensionality

Tue 05-06-2018
There is such a thing as too much of a good thing.

We discuss the many ways in which analysis can be confounded when data has a large number of dimensions (variables). Collectively, these are called the "curses of dimensionality".

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Nature Methods Points of Significance column: Curse(s) of dimensionality. (read)

Some of these are unintuitive, such as the fact that the volume of the hypersphere increases and then shrinks beyond about 7 dimensions, while the volume of the hypercube always increases. This means that high-dimensional space is "mostly corners" and the distance between points increases greatly with dimension. This has consequences on correlation and classification.

Altman, N. & Krzywinski, M. (2018) Points of significance: Curse(s) of dimensionality Nature Methods 15:399–400.

Statistics vs Machine Learning

Tue 03-04-2018
We conclude our series on Machine Learning with a comparison of two approaches: classical statistical inference and machine learning. The boundary between them is subject to debate, but important generalizations can be made.

Inference creates a mathematical model of the datageneration process to formalize understanding or test a hypothesis about how the system behaves. Prediction aims at forecasting unobserved outcomes or future behavior. Typically we want to do both and know how biological processes work and what will happen next. Inference and ML are complementary in pointing us to biologically meaningful conclusions.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Nature Methods Points of Significance column: Statistics vs machine learning. (read)

Statistics asks us to choose a model that incorporates our knowledge of the system, and ML requires us to choose a predictive algorithm by relying on its empirical capabilities. Justification for an inference model typically rests on whether we feel it adequately captures the essence of the system. The choice of pattern-learning algorithms often depends on measures of past performance in similar scenarios.

Bzdok, D., Krzywinski, M. & Altman, N. (2018) Points of Significance: Statistics vs machine learning. Nature Methods 15:233–234.

Background reading

Bzdok, D., Krzywinski, M. & Altman, N. (2017) Points of Significance: Machine learning: a primer. Nature Methods 14:1119–1120.

Bzdok, D., Krzywinski, M. & Altman, N. (2017) Points of Significance: Machine learning: supervised methods. Nature Methods 15:5–6.

...more about the Points of Significance column

Happy 2018 `\pi` Day—Boonies, burbs and boutiques of `\pi`

Wed 14-03-2018

Celebrate `\pi` Day (March 14th) and go to brand new places. Together with Jake Lever, this year we shrink the world and play with road maps.

Streets are seamlessly streets from across the world. Finally, a halva shop on the same block!

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
A great 10 km run loop between Istanbul, Copenhagen, San Francisco and Dublin. Stop off for halva, smørrebrød, espresso and a Guinness on the way. (details)

Intriguing and personal patterns of urban development for each city appear in the Boonies, Burbs and Boutiques series.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
In the Boonies, Burbs and Boutiques of `\pi` we draw progressively denser patches using the digit sequence 159 to inform density. (details)

No color—just lines. Lines from Marrakesh, Prague, Istanbul, Nice and other destinations for the mind and the heart.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Roads from cities rearranged according to the digits of `\pi`. (details)

The art is featured in the Pi City on the Scientific American SA Visual blog.

Check out art from previous years: 2013 `\pi` Day and 2014 `\pi` Day, 2015 `\pi` Day, 2016 `\pi` Day and 2017 `\pi` Day.

Machine learning: supervised methods (SVM & kNN)

Thu 18-01-2018
Supervised learning algorithms extract general principles from observed examples guided by a specific prediction objective.

We examine two very common supervised machine learning methods: linear support vector machines (SVM) and k-nearest neighbors (kNN).

SVM is often less computationally demanding than kNN and is easier to interpret, but it can identify only a limited set of patterns. On the other hand, kNN can find very complex patterns, but its output is more challenging to interpret.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Nature Methods Points of Significance column: Machine learning: supervised methods (SVM & kNN). (read)

We illustrate SVM using a data set in which points fall into two categories, which are separated in SVM by a straight line "margin". SVM can be tuned using a parameter that influences the width and location of the margin, permitting points to fall within the margin or on the wrong side of the margin. We then show how kNN relaxes explicit boundary definitions, such as the straight line in SVM, and how kNN too can be tuned to create more robust classification.

Bzdok, D., Krzywinski, M. & Altman, N. (2018) Points of Significance: Machine learning: a primer. Nature Methods 15:5–6.

Background reading

Bzdok, D., Krzywinski, M. & Altman, N. (2017) Points of Significance: Machine learning: a primer. Nature Methods 14:1119–1120.

...more about the Points of Significance column

Human Versus Machine

Tue 16-01-2018
Balancing subjective design with objective optimization.

In a Nature graphics blog article, I present my process behind designing the stark black-and-white Nature 10 cover.

Nature 10, 18 December 2017

Machine learning: a primer

Thu 18-01-2018
Machine learning extracts patterns from data without explicit instructions.

In this primer, we focus on essential ML principles— a modeling strategy to let the data speak for themselves, to the extent possible.

The benefits of ML arise from its use of a large number of tuning parameters or weights, which control the algorithm’s complexity and are estimated from the data using numerical optimization. Often ML algorithms are motivated by heuristics such as models of interacting neurons or natural evolution—even if the underlying mechanism of the biological system being studied is substantially different. The utility of ML algorithms is typically assessed empirically by how well extracted patterns generalize to new observations.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Nature Methods Points of Significance column: Machine learning: a primer. (read)

We present a data scenario in which we fit to a model with 5 predictors using polynomials and show what to expect from ML when noise and sample size vary. We also demonstrate the consequences of excluding an important predictor or including a spurious one.

Bzdok, D., Krzywinski, M. & Altman, N. (2017) Points of Significance: Machine learning: a primer. Nature Methods 14:1119–1120.

...more about the Points of Significance column