Martin Krzywinski / Canada's Michael Smith Genome Sciences Centre / mkweb.bcgsc.ca Martin Krzywinski / Canada's Michael Smith Genome Sciences Centre / mkweb.bcgsc.ca - contact me Martin Krzywinski / Canada's Michael Smith Genome Sciences Centre / mkweb.bcgsc.ca on Twitter Martin Krzywinski / Canada's Michael Smith Genome Sciences Centre / mkweb.bcgsc.ca - Lumondo Photography Martin Krzywinski / Canada's Michael Smith Genome Sciences Centre / mkweb.bcgsc.ca - Pi Art Martin Krzywinski / Canada's Michael Smith Genome Sciences Centre / mkweb.bcgsc.ca - Hilbertonians - Creatures on the Hilbert CurveMartin Krzywinski / Canada's Michael Smith Genome Sciences Centre / mkweb.bcgsc.ca - Pi Day 2020 - Piku
Where am I supposed to go? Where was I supposed to know?Violet Indianaget lost in questionsmore quotes

PNAS Cover: Earth BioGenome Project


language + fiction

Dark Matter of the English Language—the unwords

Words are easy, like the wind;
Faithful friends are hard to find.
—William Shakespeare

unanimals

Critters that definitely don't exist but, perhaps, should.

The backal is probably a feisty biter while the cakmiran probably has a quizzical look. And I would completely avoid the fangol—he sounds like trouble.

A great exercise for kids and the comedic-at-heart would be to try to draw some of these. What would a gakrin look like? Or a gorderish?

Below are the alphabetically first 4–10 letter single-word unanimals for each letter. In some cases, no names of a given length were generated for a given letter.

—4—
aytt
bebe
bick
caen
calb
dalh
dlol
fibl
file
galg
gaon
haen
hale
ilpa
jang
kall
laot
laro
mard
mean
naal
neat
orot
oton
pate
peof
qaid
radc
ranl
saol
shal
tial
walr
weil
—5—
acter
alome
boloo
brata
cabal
capir
dacwo
daxol
fimat
fogon
gatey
geass
haore
heisa
ihire
kardo
kouse
lalpy
lante
malbe
morci
nlreg
nriwe
oacda
omita
paric
ponga
radka
ramep
saage
saako
teart
ufuse
wease
weatl
—6—
acukoe
agtalt
backal
banher
caidat
calepe
dearle
dolpin
eyrita
fangol
gafala
gakrin
haamet
hadnel
iykile
jacang
kagcet
kurdot
lalper
largoz
mamket
mander
narnla
oammim
ooceat
palyus
patble
rarman
ravlil
seaise
seikol
tarbaa
tonele
usrenl
valiss
waatir
whagit
—7—
amreron
apunaed
baadber
balsidd
cadtole
calfasf
daldaug
dalfiso
eolgeal
eomrarf
fondard
gallish
gamymly
hankrer
hokloru
itarato
jatfish
jatwoss
kaister
lamushe
leittoy
madarle
malfash
narddco
nhucasf
oncigut
ootfoto
pakline
parcata
qicsoor
raacbor
raipins
sablrod
sabrilr
tenlrit
tonmede
vansoar
vatkifh
waldfil
walslil
—8—
anlonfow
arnbwict
baieslel
barnnkor
caeffuse
cakmiran
disteale
erhadiol
geepbuwl
golshowo
halalale
hocscist
loicpalt
lruzgind
mannforl
marppuse
obberose
oosgerle
pandleie
perphist
raaldope
ragprerd
saelling
saistiet
tolrfish
valcunle
wadmfish
wasshail
—9—
anlfilher
beigartal
cacdockud
cagccride
gardefand
gorderish
ipilfoyor
keosildor
laechinee
lhallaeye
malpandie
maltreuge
okrerblon
pallanmer
penrhapor
shipopish
shorgeone
ugoflifes
waadarall
waamesder
—10—
asdrosquod
cackemorel
canzlitbar
gaotemtirh
gorofoshew
hirkaflarl
honkerfosh
mapobanadl
moalarfesg
nearretlee
qoarrorule
raccistech
sancockese
sealdhicnh
waagelidhe
weendefish
—11—
condlidilin
cotarleweer
galafonllar
geatingtink
rellswobgry
soridioatar
wolfendelad

Here are all some lists with common suffixes

*ish camfish gallish gawlish gohfish gurrish jatfish mipkish polmish wamfish gorderish shipopish slarmish soulfish tolrfish wadmfish weendefish

*ile halile iykile weadnrile cragiile file gile

*ale anmale calilale disteale halalale hale saale

*use bampuse caeffuse marppuse kouse ufuse

*her banher coocher lorsher anlfilher wher

*tar codtar mistar soridioatar wortautar

*ole rorole cadtole wurkole cole

*ise seaise shoise guceyrise

VIEW ALL

news + thoughts

Anatomy of SARS-Cov-2

Tue 31-05-2022

My poster showing the genome structure and position of mutations on all SARS-CoV-2 variants appears in the March/April 2022 issue of American Scientist.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Deadly Genomes: Genome Structure and Size of Harmful Bacteria and Viruses (zoom)

An accompanying piece breaks down the anatomy of each genome — by gene and ORF, oriented to emphasize relative differences that are caused by mutations.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Deadly Genomes: Genome Structure and Size of Harmful Bacteria and Viruses (zoom)

Cancer Cell cover

Sat 23-04-2022

My cover design on the 11 April 2022 Cancer Cell issue depicts depicts cellular heterogeneity as a kaleidoscope generated from immunofluorescence staining of the glial and neuronal markers MBP and NeuN (respectively) in a GBM patient-derived explant.

LeBlanc VG et al. Single-cell landscapes of primary glioblastomas and matched explants and cell lines show variable retention of inter- and intratumor heterogeneity (2022) Cancer Cell 40:379–392.E9.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
My Cancer Cell kaleidoscope cover (volume 40, issue 4, 11 April 2022). (more)

Browse my gallery of cover designs.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
A catalogue of my journal and magazine cover designs. (more)

Nature Biotechnology cover

Sat 23-04-2022

My cover design on the 4 April 2022 Nature Biotechnology issue is an impression of a phylogenetic tree of over 200 million sequences.

Konno N et al. Deep distributed computing to reconstruct extremely large lineage trees (2022) Nature Biotechnology 40:566–575.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
My Nature Biotechnology phylogenetic tree cover (volume 40, issue 4, 4 April 2022). (more)

Browse my gallery of cover designs.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
A catalogue of my journal and magazine cover designs. (more)

Nature cover — Gene Genie

Sat 23-04-2022

My cover design on the 17 March 2022 Nature issue depicts the evolutionary properties of sequences at the extremes of the evolvability spectrum.

Vaishnav ED et al. The evolution, evolvability and engineering of gene regulatory DNA (2022) Nature 603:455–463.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
My Nature squiggles cover (volume 603, issue 7901, 17 March 2022). (more)

Browse my gallery of cover designs.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
A catalogue of my journal and magazine cover designs. (more)

Happy 2022 `\pi` Day—
three one four: a number of notes

Mon 14-03-2022

Celebrate `\pi` Day (March 14th) and finally hear what you've been missing.

“three one four: a number of notes” is a musical exploration of how we think about mathematics and how we feel about mathematics. It tells stories from the very beginning (314…) to the very (known) end of π (...264) as well as math (Wallis Product) and math jokes (Feynman Point), repetition (nn) and zeroes (null).

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Listen to `\pi` in the style of 20th century classical music. (details)

The album is scored for solo piano in the style of 20th century classical music – each piece has a distinct personality, drawn from styles of Boulez, Feldman, Glass, Ligeti, Monk, and Satie.

Each piece is accompanied by a piku (or πku), a poem whose syllable count is determined by a specific sequence of digits from π.

Check out art from previous years: 2013 `\pi` Day and 2014 `\pi` Day, 2015 `\pi` Day, 2016 `\pi` Day, 2017 `\pi` Day, 2018 `\pi` Day, 2019 `\pi` Day, 2020 `\pi` Day and 2021 `\pi` Day.

PNAS Cover — Earth BioGenome Project

Fri 28-01-2022

My design appears on the 25 January 2022 PNAS issue.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
My PNAS cover design captures the vision of the Earth BioGenome Project — to sequence everything. (more)

The cover shows a view of Earth that captures the vision of the Earth BioGenome Project — understanding and conserving genetic diversity on a global scale. Continents from the Authagraph projection, which preserves areas and shapes, are represented as a double helix of 32,111 bases. Short sequences of 806 unique species, sequenced as part of EBP-affiliated projects, are mapped onto the double helix of the continent (or ocean) where the species is commonly found. The length of the sequence is the same for each species on a continent (or ocean) and the sequences are separated by short gaps. Individual bases of the sequence are colored by dots. Species appear along the path in alphabetical order (by Latin name) and the first base of the first species is identified by a small black triangle.

Lewin HA et al. The Earth BioGenome Project 2020: Starting the clock. (2022) PNAS 119(4) e2115635118.