Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - contact me Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca on Twitter Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - Lumondo Photography Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - Pi Art Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - Hilbertonians - Creatures on the Hilbert Curve
This love's a nameless dream.Cocteau Twinstry to figure it out

curves: beautiful



Bioinformatics and Genome Analysis Course. Izmir International Biomedicine and Genome Institute, Izmir, Turkey. May 2–14, 2016


visualization + design

Math geek? If you like the clean geometric design of the type posters, you may enjoy something even more mathematical. Design that transcends repetition: Art of Pi, Phi and e posters.

Visions of Type

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca buy artwork
Type peep show — the private curves of letters. (BUY ARTWORK)
Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca buy artwork
Sixteen ands — a consensus of conjunctions. (BUY ARTWORK)
Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca buy artwork
Sixteen faces — fonts in argument. (BUY ARTWORK)

type peep show—the private curves of letters

Sometimes to understand the whole, we need to look more closely at its parts. Completely safe for work.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca buy artwork
Bodoni type peep show. (BUY ARTWORK)
Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca buy artwork
Century type peep show. (BUY ARTWORK)
Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca buy artwork
Dax type peep show. (BUY ARTWORK)

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca buy artwork
Franklin Gothic type peep show. (BUY ARTWORK)
Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca buy artwork
Futura type peep show. (BUY ARTWORK)
Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca buy artwork
Gill Sans type peep show. (BUY ARTWORK)

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca buy artwork
Helvetica type peep show. (BUY ARTWORK)
Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca buy artwork
Minion type peep show. (BUY ARTWORK)
Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca buy artwork
Platelet type peep show. (BUY ARTWORK)

I include Emigre's Platelet because it's such a goofy and fun font. One look at the lower case b and you know this isn't a type face that wears a tie.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca buy artwork
Type peep show of nine faces. (BUY ARTWORK)
Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca buy artwork
Type peep show of nine faces. (BUY ARTWORK)

lusting for ampersands

To me the ampersand is the letter I always say yes to.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca buy artwork
Ampersands. (BUY ARTWORK)

sixteen ands

Below, sixteen ampersands from different fonts are centered vertically and horizontally. Look how they blend together to reveal a consensus letter.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca buy artwork
Sixteen ands. (BUY ARTWORK)

sixteen faces

Finding inspiration in this IKEA Olunda poster of Akzidenz-Grotesk, I've rendered the full alphabet in sixteen faces. Look at how agreeable the T's are. But the J's — oh, the J's — a riot.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca buy artwork
Sixteen faces. (BUY ARTWORK)

news + thoughts

Gene Volume Control

Thu 11-06-2015

I was commissioned by Scientific American to create an information graphic based on Figure 9 in the landmark Nature Integrative analysis of 111 reference human epigenomes paper.

The original figure details the relationships between more than 100 sequenced epigenomes and genetic traits, including disease like Crohn's and Alzheimer's. These relationships were shown as a heatmap in which the epigenome-trait cell depicted the P value associated with tissue-specific H3K4me1 epigenetic modification in regions of the genome associated with the trait.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Figure 9 from Integrative analysis of 111 reference human epigenomes (Nature (2015) 518 317–330). (details)

As much as I distrust network diagrams, in this case this was the right way to show the data. The network was meticulously laid out by hand to draw attention to the layered groups of diseases of traits.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Network diagram redesign of the heatmap for a select set of traits. Only relationships with –log P > 3.9 are displayed. Appears on Graphic Science page in June 2015 issue of Scientific American. (details)

This was my second information graphic for the Graphic Science page. Last year, I illustrated the extent of differences in the gene sequence of humans, Denisovans, chimps and gorillas.

Sampling distributions and the bootstrap

Thu 11-06-2015

The bootstrap is a computational method that simulates new sample from observed data. These simulated samples can be used to determine how estimates from replicate experiments might be distributed and answer questions about precision and bias.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Nature Methods Points of Significance column: Sampling distributions and the bootstrap. (read)

We discuss both parametric and non-parametric bootstrap. In the former, observed data are fit to a model and then new samples are drawn using the model. In the latter, no model assumption is made and simulated samples are drawn with replacement from the observed data.

Kulesa, A., Krzywinski, M., Blainey, P. & Altman, N (2015) Points of Significance: Sampling distributions and the bootstrap Nature Methods 12:477-478.

Background reading

Krzywinski, M. & Altman, N. (2013) Points of Significance: Importance of being uncertain. Nature Methods 10:809-810.

...more about the Points of Significance column

Bayesian statistics

Thu 30-04-2015

Building on last month's column about Bayes' Theorem, we introduce Bayesian inference and contrast it to frequentist inference.

Given a hypothesis and a model, the frequentist calculates the probability of different data generated by the model, P(data|model). When this probability to obtain the observed data from the model is small (e.g. `alpha` = 0.05), the frequentist rejects the hypothesis.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Nature Methods Points of Significance column: Bayesian Statistics. (read)

In contrast, the Bayesian makes direct probability statements about the model by calculating P(model|data). In other words, given the observed data, the probability that the model is correct. With this approach it is possible to relate the probability of different models to identify one that is most compatible with the data.

The Bayesian approach is actually more intuitive. From the frequentist point of view, the probability used to assess the veracity of a hypothesis, P(data|model), commonly referred to as the P value, does not help us determine the probability that the model is correct. In fact, the P value is commonly misinterpreted as the probability that the hypothesis is right. This is the so-called "prosecutor's fallacy", which confuses the two conditional probabilities P(data|model) for P(model|data). It is the latter quantity that is more directly useful and calculated by the Bayesian.

Puga, J.L, Krzywinski, M. & Altman, N. (2015) Points of Significance: Bayes' Theorem Nature Methods 12:277-278.

Background reading

Puga, J.L, Krzywinski, M. & Altman, N. (2015) Points of Significance: Bayes' Theorem Nature Methods 12:277-278.

...more about the Points of Significance column

Bayes' Theorem

Wed 22-04-2015

In our first column on Bayesian statistics, we introduce conditional probabilities and Bayes' theorem

P(B|A) = P(A|B) × P(B) / P(A)

This relationship between conditional probabilities P(B|A) and P(A|B) is central in Bayesian statistics. We illustrate how Bayes' theorem can be used to quickly calculate useful probabilities that are more difficult to conceptualize within a frequentist framework.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Nature Methods Points of Significance column: Bayes' Theorem. (read)

Using Bayes' theorem, we can incorporate our beliefs and prior experience about a system and update it when data are collected.

Puga, J.L, Krzywinski, M. & Altman, N. (2015) Points of Significance: Bayes' Theorem Nature Methods 12:277-278.

Background reading

Oldford, R.W. & Cherry, W.H. Picturing probability: the poverty of Venn diagrams, the richness of eikosograms. (University of Waterloo, 2006)

...more about the Points of Significance column

Happy 2015 Pi Day—can you see `pi` through the treemap?

Sat 14-03-2015

Celebrate `pi` Day (March 14th) with splitting its digit endlessly. This year I use a treemap approach to encode the digits in the style of Piet Mondrian.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Digits of `pi`, `phi` and `e`. (details)

The art has been featured in Ana Swanson's Wonkblog article at the Washington Post—10 Stunning Images Show The Beauty Hidden in `pi`.

I also have art from 2013 `pi` Day and 2014 `pi` Day.