Distractions and amusements, with a sandwich and coffee.
In the process of designing my Snellen Eye Chart typographical posters, I came across the Snellen font by Andrew Howlett. I wasn't happy with all the letters, so I made attempts at giving the font an update. I call this redesign "Snellen MK", to avoid conflict with Howlett's "Snellen".
Not being a font designer, I will likely get myself into trouble.
While making my Snellen chart series, I entered the rabbit hole of optotype fonts ... and I can't get out!
The charts don't necessarily use the latest version of my Snellen font design, which fluctuates as my mood about some of the letters changes.
The optotype requirement is that letters be designed on a 5 × 5 grid, and have constant stroke width. This means that both lower and upper case letters need to share the grid and stroke. To stay compatible with the eyechart paradigm, letters should be as obvious as possible.
Lorrie Frear's article What are Optotypes? Eye Charts in Focus is a great read about optotypes and eye charts.
The uppercase letter design uses Herman Snellen's original chart as inspiration.
I have modified the design by Andrew Howlett (see below) for some letters. All the changes are relatively minor: more serifs and consistent stroke width for bars on R and K.
The lowercase characters should be considered experimental.
The progress of my redesign is shown below. I would greatly appreciate feedback and suggestions!
The distribution contains both Andrew's version and my redesign.
v7.002 11-Jul-2019 — Download SnellenMK optotype font
Tidied all letter forms with Fontlab 6.
Fixed g and e. Thanks to Makeesha Fisher for suggestions.
Adjusted serifs on f, j, l, o, t to extend the full width of the grid. Added a lot more symbols.
Added lowercase, digits and symbols.
Adding digits.
I'm exploring the lowercase characters. I don't know what I want to do with them. Make this into a more standard font in which lowercase letters are smaller, so that letters can fit their roles clearly when text is set in sentence case, or fill out the full optotype grid.
Flushed out some inconsistencies in the uppercase characters. Added serifs to more letters.
Now all the letters occuppy the full 5 × 5 grid, including the I, whose serifs were widened to allow this. While this new uppercase I isn't as pretty as the old one, it makes the entire typeface more consistent to its optotype roots.
Still struggling with the G. In the original version, the descending stroke was cut off in the middle of a grid, which I didn't like.
The S has been fixed—thanks to Elanor Lutz for feedback.
I've color coded the characters slightly differently, drawing attention to ones that I feel need more thought.
The lowercase characters aren't color coded (yet) because ... most of them need help. Primarily, I'm vacillating between making them fill the full size of the 5 × 5 square, just like the uppercase characters, and keeping them confined to a 4 × 4 square, which incurs loss of legibility. If I make the letters the same size, it will be impossible to distinguish lowercase and uppercase characters some cases (e.g. c, i). Perhaps this is desired?
First attempt at lowercase characters.
My cover design on the 11 April 2022 Cancer Cell issue depicts depicts cellular heterogeneity as a kaleidoscope generated from immunofluorescence staining of the glial and neuronal markers MBP and NeuN (respectively) in a GBM patient-derived explant.
LeBlanc VG et al. Single-cell landscapes of primary glioblastomas and matched explants and cell lines show variable retention of inter- and intratumor heterogeneity (2022) Cancer Cell 40:379–392.E9.
Browse my gallery of cover designs.
My cover design on the 4 April 2022 Nature Biotechnology issue is an impression of a phylogenetic tree of over 200 million sequences.
Konno N et al. Deep distributed computing to reconstruct extremely large lineage trees (2022) Nature Biotechnology 40:566–575.
Browse my gallery of cover designs.
My cover design on the 17 March 2022 Nature issue depicts the evolutionary properties of sequences at the extremes of the evolvability spectrum.
Vaishnav ED et al. The evolution, evolvability and engineering of gene regulatory DNA (2022) Nature 603:455–463.
Browse my gallery of cover designs.
Celebrate `\pi` Day (March 14th) and finally hear what you've been missing.
“three one four: a number of notes” is a musical exploration of how we think about mathematics and how we feel about mathematics. It tells stories from the very beginning (314…) to the very (known) end of π (...264) as well as math (Wallis Product) and math jokes (Feynman Point), repetition (nn) and zeroes (null).
The album is scored for solo piano in the style of 20th century classical music – each piece has a distinct personality, drawn from styles of Boulez, Feldman, Glass, Ligeti, Monk, and Satie.
Each piece is accompanied by a piku (or πku), a poem whose syllable count is determined by a specific sequence of digits from π.
Check out art from previous years: 2013 `\pi` Day and 2014 `\pi` Day, 2015 `\pi` Day, 2016 `\pi` Day, 2017 `\pi` Day, 2018 `\pi` Day, 2019 `\pi` Day, 2020 `\pi` Day and 2021 `\pi` Day.
My design appears on the 25 January 2022 PNAS issue.
The cover shows a view of Earth that captures the vision of the Earth BioGenome Project — understanding and conserving genetic diversity on a global scale. Continents from the Authagraph projection, which preserves areas and shapes, are represented as a double helix of 32,111 bases. Short sequences of 806 unique species, sequenced as part of EBP-affiliated projects, are mapped onto the double helix of the continent (or ocean) where the species is commonly found. The length of the sequence is the same for each species on a continent (or ocean) and the sequences are separated by short gaps. Individual bases of the sequence are colored by dots. Species appear along the path in alphabetical order (by Latin name) and the first base of the first species is identified by a small black triangle.
Lewin HA et al. The Earth BioGenome Project 2020: Starting the clock. (2022) PNAS 119(4) e2115635118.