Distractions and amusements, with a sandwich and coffee.
In the process of designing my Snellen Eye Chart typographical posters, I came across the Snellen font by Andrew Howlett. I wasn't happy with all the letters, so I made attempts at giving the font an update. I call this redesign "Snellen MK", to avoid conflict with Howlett's "Snellen".
Not being a font designer, I will likely get myself into trouble.
While making my Snellen chart series, I entered the rabbit hole of optotype fonts ... and I can't get out!
The charts don't necessarily use the latest version of my Snellen font design, which fluctuates as my mood about some of the letters changes.
The optotype requirement is that letters be designed on a 5 × 5 grid, and have constant stroke width. This means that both lower and upper case letters need to share the grid and stroke. To stay compatible with the eyechart paradigm, letters should be as obvious as possible.
Lorrie Frear's article What are Optotypes? Eye Charts in Focus is a great read about optotypes and eye charts.
The uppercase letter design uses Herman Snellen's original chart as inspiration.
I have modified the design by Andrew Howlett (see below) for some letters. All the changes are relatively minor: more serifs and consistent stroke width for bars on R and K.
The lowercase characters should be considered experimental.
The progress of my redesign is shown below. I would greatly appreciate feedback and suggestions!
The distribution contains both Andrew's version and my redesign.
v7.002 11-Jul-2019 — Download SnellenMK optotype font
Tidied all letter forms with Fontlab 6.
Fixed g and e. Thanks to Makeesha Fisher for suggestions.
Adjusted serifs on f, j, l, o, t to extend the full width of the grid. Added a lot more symbols.
Added lowercase, digits and symbols.
Adding digits.
I'm exploring the lowercase characters. I don't know what I want to do with them. Make this into a more standard font in which lowercase letters are smaller, so that letters can fit their roles clearly when text is set in sentence case, or fill out the full optotype grid.
Flushed out some inconsistencies in the uppercase characters. Added serifs to more letters.
Now all the letters occuppy the full 5 × 5 grid, including the I, whose serifs were widened to allow this. While this new uppercase I isn't as pretty as the old one, it makes the entire typeface more consistent to its optotype roots.
Still struggling with the G. In the original version, the descending stroke was cut off in the middle of a grid, which I didn't like.
The S has been fixed—thanks to Elanor Lutz for feedback.
I've color coded the characters slightly differently, drawing attention to ones that I feel need more thought.
The lowercase characters aren't color coded (yet) because ... most of them need help. Primarily, I'm vacillating between making them fill the full size of the 5 × 5 square, just like the uppercase characters, and keeping them confined to a 4 × 4 square, which incurs loss of legibility. If I make the letters the same size, it will be impossible to distinguish lowercase and uppercase characters some cases (e.g. c, i). Perhaps this is desired?
First attempt at lowercase characters.
Love's the only engine of survival. —L. Cohen
We begin a series on survival analysis in the context of its two key complications: skew (which calls for the use of probability distributions, such as the Weibull, that can accomodate skew) and censoring (required because we almost always fail to observe the event in question for all subjects).
We discuss right, left and interval censoring and how mishandling censoring can lead to bias and loss of sensitivity in tests that probe for differences in survival times.
Dey, T., Lipsitz, S.R., Cooper, Z., Trinh, Q., Krzywinski, M & Altman, N. (2022) Points of significance: Survival analysis—time-to-event data and censoring. Nature Methods 19:906–908.
See How Scientists Put Together the Complete Human Genome.
My graphic in Scientific American's Graphic Science section in the August 2022 issue shows the full history of the human genome assembly — from its humble shotgun beginnings to the gapless telomere-to-telomere assembly.
Read about the process and methods behind the creation of the graphic.
See all my Scientific American Graphic Science visualizations.
My poster showing the genome structure and position of mutations on all SARS-CoV-2 variants appears in the March/April 2022 issue of American Scientist.
An accompanying piece breaks down the anatomy of each genome — by gene and ORF, oriented to emphasize relative differences that are caused by mutations.
My cover design on the 11 April 2022 Cancer Cell issue depicts depicts cellular heterogeneity as a kaleidoscope generated from immunofluorescence staining of the glial and neuronal markers MBP and NeuN (respectively) in a GBM patient-derived explant.
LeBlanc VG et al. Single-cell landscapes of primary glioblastomas and matched explants and cell lines show variable retention of inter- and intratumor heterogeneity (2022) Cancer Cell 40:379–392.E9.
Browse my gallery of cover designs.
My cover design on the 4 April 2022 Nature Biotechnology issue is an impression of a phylogenetic tree of over 200 million sequences.
Konno N et al. Deep distributed computing to reconstruct extremely large lineage trees (2022) Nature Biotechnology 40:566–575.
Browse my gallery of cover designs.