latest newsbuy art
Twenty — minutes — maybe — more.Naomichoose four wordsmore quotes
science + communication
Visit the Graphical Abstract Hospital to see redesigns of real-world abstracts and learn practical design guidelines for graphical abstracts and small figures.
The Nature Methods Points of View column column offers practical advice in design and data presentation for the busy scientist.

Effective poster design for science communication

Guidelines to get you started and keep you going

Download PDF template
v1.4 14 Jul 2020
Martin Krzywinski / Martin Krzywinski @MKrzywinski
Guidelines for telling your research story—sober design, typography and data visualization tips all in one place with a minimum of fuss (v1.4 14 Jul 2020). (Download PDF template)

1 · Gimmicks and cheap tricks

There are no shortcuts—good explanations take effort. There are plenty of gimmicks and cheap tricks that masquerade as solutions—reject them.

Instead, seek out strategies that adopt the categorical imperative. If everyone used this strategy, would the (poster) world be a better place? A conference hall full of 300 QR-code posters? No thank you.

Martin Krzywinski @MKrzywinski
There are many gimmicks and cheap tricks that masquerade as solutions—reject them.

2 · Poster design guidelines

The poster design guidelines are flexible. They are built on the concept that less is more. However, sometimes a little bit more is actually more. Think before you draw and adjust the design to the themes of your story.

See how the guidelines can be applied to posters in the wild by visiting the poster hospital.

# 1
Poster child of science.

A poster is your first opportunity to organize and communicate your reasearch to members outside of your lab. It will help you to practise telling and “drawing” your science story and its design should be based on its concepts, themes and transitions.

The poster is a prop—not a paper. In most settings, you will be there to present it. Match its content to the story you will tell.

Most posters are bad not because they are ugly (they are) but because they fail to present concisely what was done and, more importantly, why it was done.

Most posters have too much content, presented too flatly. Less is more: get to the point, then stop.


Detail on demand, not by default.


Curate your content, narrate and explain—don't dump.


Control your volume of speech and restrain exuberance, folly and whimsy.

2.1 · Storytelling

# 2
All science deserves excellent explanations—explain quickly and clearly.

Motivate why the work was done. What is the cost of not doing it?

State your hypothesis and conclusions clearly and early. Connect them with the fewest steps required for a first explanation.

# 3
Establish a story path and stick to it.

The reader won’t know what is important, so tell them.

Saliently and intuitively code key contrasts (e.g. healthy/disease, wildtype/mutant).

Good explanations are ones conveniently placed. Embed simple diagrams next to relevant text.

2.2 · Design

# 4
Only you can stop poster dumpster fires.

Clean and consistent design allows for subtle cues to call out important observations and other points of interest.

Clip art, pie charts, bullet points, boxes around text, background fills, textures and gradients. Only you can stop it.

# 5
Maintain good Gestalt grouping.

Create groups to encode real-world relationships and be on the lookout for unintended accidental groupings.


Similar shapes and colors will form groups.


Objects and shapes that are close to one another will form groups.

2.3 · Layout

# 6
Align aggressively.

Alignment of similar quantities subtly suggests where to look next.

Create alignment guides and use them consistently—the eye will find even small misalignments.

# 7
Let content inform layout.

Do not let a template bully you into using a specific column width. Change proportions to suit content.

Be prepared to rewrite. There are many ways to say something and some ways are easier to typeset.

# 8
Separate and organize elements with space.

Space makes groups.

Dividing lines can be effective but more can make the poster look congested.

Hollow boxes are jails and do not distinguish foreground from background.

# 9
Make room for negative space.

Don’t say everything you know. Your most valuable resource is the reader’s time.

Regions of unbalanced negative space are good candidates for annotations, credits, quotes, and other garnish that adds value to the poster. Don’t overdo it—most quotes rehash old tropes. If you must, find something that is passionate and slightly mysterious.

2.4 · Typography

# 10
Use classic fonts and match them based on historical period, family or creator.

Sans-serif is clearer than serif at small sizes and suitable for modest amounts of copy.

Match Helvetica/Minion, Frutiger/Apollo, Gill Sans/Perpetua, Gotham/Mercury, Legancy/Jensen, Syntax/Sabon, Univers/Meridien.

Italicize text with care and look for unintended italics in subscripts.

# 11
Maintain and control proportions.

This poster is 16” × 12” (1152 × 864 pt), uses Helvetica Neue with a 5, 8, 13, 21, 34, 55 pt scale ladder, and is legible on most screens.


A point is a unit of size used in typography. Without a physical size they lose their meaning, but can provide a helpful scale.


Select type sizes from one or a union of two modular scales built on the Golden Ratio (e.g., 55/34 ≈ φ = 1.618...).

Keep line length short and hyphenate instead of fully justifying.

# 12
Use a lead to announce an observation or insightful comment.

Establish subordinate content with italics.

Reserve small text for tangents and detail beyond the first explanation.

Bold caps for panel subtitles

Use typographical garnish sparingly—be creative, but in small steps. A well-placed symbol or label can connect themes or indicate the purpose of text (e.g. triangles suggest a legend).

Align symbols independently of subscripts and superscripts.

# 13
Force line breaks to improve readability.

Split a sentence into noun phrases or offer a natural pause, such as at a comma or a period.

Balance layout by shortening sentences—there are many ways to say something and some ways are easier to typeset.

2.5 · Writing copy

# 14
Everything is important, but some things are more important than others.

Establish a visual hierarchy by emphasizing your hypothesis, conclusion and the key points that connect them.

Relegate protocols, technical methods, and other minutiae to the bottom of the poster.

Always be mindful of what the reader needs to know to understand enough to ask insightful questions and frontload this information.

# 15
Best titles are short conclusions, not long introductions.

Avoid long addressess—no postal codes, no zip codes.

Your work is a “study” and explores a “relationship” to look for an “effect”. Treat that as a given and say what is important.

# 16
Avoid obvious headings such as “references” or "acknowledgements".

Citations can be set in a block of text, with bold numbers like this 1. R. Bringhurst, Elements of Typographical Style. 4th ed (2012) and 2. W. Strunk Jr., Elements of Style (1918). Unless a specific citation style is required, use a compact style that also includes the title.

# 17
Write with a sober and unaffected tone.

Don’t try to be snarky, cheeky or witty—most attempts do not succeed. Don’t trigger the jokers, cynics, cranks and curmudgeons.

Heed Strunk's Elements of Style:


“Make definite assertions. Avoid tame, colorless, hesitating, non-committal language. Use the word not as a means of denial or in antithesis, never as a means of evasion.”


“Use definite, specific, concrete language.”


“Do not overwrite. Rich, ornate prose is hard to digest, generally unwholesome, and sometimes nauseating.”


Be “compact, informative, unpretentious.” and avoid “a breezy style is often the work of an egocentric, the person who imagines that everything that comes to mind is of general interest.”


“Avoid a succession of loose sentences.”

2.6 · Color

# 18
Use color strategically.

Color powerfully classifies content. It is impossible to achieve this if everything is in color or if the poster is agrresively colourfully branded.

A ramp of colors of the same hue (e.g. green, blue) is useful to communicate continuous quantity. Use a single salient color (e.g. orange, magenta) to underscore a key theme, observation or conclusion.

Design for accessibility by colorblind readers.


Do not reuse the same color for a different meaning.


Work in CMYK space and avoid 100% saturated colors.

# 19
Use color for themes or data encoding and not as garnish.

The first color to appear should begin the core story.

Map salience to pertinence. When used in moderation, colors like orange or magenta say “look here”. You cannot look everywhere.

Avoid unintentional emphasis by equalizing for perceptual luminance.


Colored text may help emphasize a theme but use it sparsely.


Round corners slightly for eye comfort.


Extend beyond the frame to imply a crop or continuity.

2.7 · Data visualization

# 20
Use ink sparingly to make compact figures legible.

Dense is not necessarily crowded.

Explain an encoding once and reuse it.

Create a visual key for complex encodings and choose graphical explanations over text.

Use Brewer palettes, even for greys.

# 21
Avoid visual complications that are not relevant

Color blending can create distracting intersections of color.

Superimpose white outlines to emphasize shapes with an opaque fill.

Use multiply blend mode to layer dense data. Hollow points make excellent outliers.

# 22
Use small multiples.

Tabulate plots and text seamlessly with a column or row for explanations.

# 23
Arrows imply a relationship or change.

Do not use them to guide the eye, which can be achieved with spacing and alignment.

2.8 · Figures

# 24
Use figure titles to explain trends, not merely to specify the axes.

Don’t tell the reader what they're seeing: “a linear fit to a scatter plot” is redundant. Explain and interpret the figure instead.

# 25
Establish a visual hierarchy.

Trends and their explanations should be the most salient.

Do not use excess ink on axes and navigation elements.


Use 0.5pt lines for axis lines and ticks.


Avoid dense ticks and tick labels.


Place grids on top with a multiply blend.

Highlight regions of interests with a solid color (or grey), not outlines.

Cue important observations and intervals with arrows or outlines.

# 26
Forego legends in favour of inline explanations.

Embed text and attach labels to data to avoid legends.

Italicize variables in fit diagnostics and use shaded bands for confidence intervals.

Callout lines should be rectilinear or at 45° if the graphic already has such elements.

# 27
Share axes or align panels to clarify variables or emphasize changing scale.

Categorical variables in bar charts do not need an explicit axis. Specify sample sizes and what error bars represent (e.g. standard error of mean, `n = 5`). Report `P`-values with effect sizes or confidence intervals. A statistically significant observation isn’t necessarily of biological interest.

Establish continuity using figures that share an axis. Thresholds that span across panels (dashed lines, not dotted) lead the eye naturally to help tell the data story.

Use grids sparingly. Do not divide the plot more finely than precision allows.

Use grey for baseline, control or reference conditions. Dark grey is easier on the eyes than pure black. Avoid dark bar outlines.

# 28
Reveal qualitative trends in small multiples with order, cutoffs and cues.

Look for opportunities to include key observations and explanations in the figure—don’t leave it to the main text, where it may be far from the graphic. Emphasize what quantities are important—anticipate the reader’s questions and answer them.


Express trends without words and draw attention to important data subsets.


Distribute based on points of interest.


Axis breaks tell a story.

2.9 · Logos

# 29
Balance visual weight and size the logos equally.

If acknowledging institutional support, place it next to the logo.

Use vector-based logos, not low-resolution bitmaps. Do not change logos’ aspect ratio or crowd it with other elements—both are likely against its branding style.

news + thoughts

Regression modeling of time-to-event data with censoring

Mon 21-11-2022

If you sit on the sofa for your entire life, you’re running a higher risk of getting heart disease and cancer. —Alex Honnold, American rock climber

In a follow-up to our Survival analysis — time-to-event data and censoring article, we look at how regression can be used to account for additional risk factors in survival analysis.

We explore accelerated failure time regression (AFTR) and the Cox Proportional Hazards model (Cox PH).

Martin Krzywinski @MKrzywinski
Nature Methods Points of Significance column: Regression modeling of time-to-event data with censoring. (read)

Dey, T., Lipsitz, S.R., Cooper, Z., Trinh, Q., Krzywinski, M & Altman, N. (2022) Points of significance: Regression modeling of time-to-event data with censoring. Nature Methods 19.

Music video for Max Cooper's Ascent

Tue 25-10-2022

My 5-dimensional animation sets the visual stage for Max Cooper's Ascent from the album Unspoken Words. I have previously collaborated with Max on telling a story about infinity for his Yearning for the Infinite album.

I provide a walkthrough the video, describe the animation system I created to generate the frames, and show you all the keyframes

Martin Krzywinski @MKrzywinski
Frame 4897 from the music video of Max Cooper's Asent.

The video recently premiered on YouTube.

Renders of the full scene are available as NFTs.

Gene Cultures exhibit — art at the MIT Museum

Tue 25-10-2022

I am more than my genome and my genome is more than me.

The MIT Museum reopened at its new location on 2nd October 2022. The new Gene Cultures exhibit featured my visualization of the human genome, which walks through the size and organization of the genome and some of the important structures.

Martin Krzywinski @MKrzywinski
My art at the MIT Museum Gene Cultures exhibit tells shows the scale and structure of the human genome. Pay no attention to the pink chicken.

Annals of Oncology cover

Wed 14-09-2022

My cover design on the 1 September 2022 Annals of Oncology issue shows 570 individual cases of difficult-to-treat cancers. Each case shows the number and type of actionable genomic alterations that were detected and the length of therapies that resulted from the analysis.

Martin Krzywinski @MKrzywinski
An organic arrangement of 570 individual cases of difficult-to-treat cancers showing genomic changes and therapies. Apperas on Annals of Oncology cover (volume 33, issue 9, 1 September 2022).

Pleasance E et al. Whole-genome and transcriptome analysis enhances precision cancer treatment options (2022) Annals of Oncology 33:939–949.

Martin Krzywinski @MKrzywinski
My Annals of Oncology 570 cancer cohort cover (volume 33, issue 9, 1 September 2022). (more)

Browse my gallery of cover designs.

Martin Krzywinski @MKrzywinski
A catalogue of my journal and magazine cover designs. (more)

Survival analysis—time-to-event data and censoring

Fri 05-08-2022

Love's the only engine of survival. —L. Cohen

We begin a series on survival analysis in the context of its two key complications: skew (which calls for the use of probability distributions, such as the Weibull, that can accomodate skew) and censoring (required because we almost always fail to observe the event in question for all subjects).

We discuss right, left and interval censoring and how mishandling censoring can lead to bias and loss of sensitivity in tests that probe for differences in survival times.

Martin Krzywinski @MKrzywinski
Nature Methods Points of Significance column: Survival analysis—time-to-event data and censoring. (read)

Dey, T., Lipsitz, S.R., Cooper, Z., Trinh, Q., Krzywinski, M & Altman, N. (2022) Points of significance: Survival analysis—time-to-event data and censoring. Nature Methods 19:906–908.

© 1999–2022 Martin Krzywinski | contact | Canada's Michael Smith Genome Sciences CentreBC Cancer Research CenterBC CancerPHSA