Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - contact me Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca on Twitter Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - Lumondo Photography Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - Pi Art Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - Hilbertonians - Creatures on the Hilbert Curve
syncopation & accordionCafe de Flore (Doctor Rockit)like France, but no dog poopmore quotes

space: exciting



In Silico Flurries: Computing a world of snow. Scientific American. 23 December 2017


visualization + design

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Cover image accompanying our article on mouse vasculature development. Biology turns astrophysical. PNAS 1 May 2012; 109 (18) (zoom, PNAS)

Creating the PNAS Cover

One of my goals in life, which I can now say has been accomplished, is to make biology look like astrophysics. Call it my love for the Torino Impact Hazard Scale.

Recently, I was given an opportunity to attend to this (admittedly vague) goal when Linda Chang from Aly Karsan's group approached me with some microscopy photos of mouse veins. I was asked to do "something" with these images for a cover submission to accompany the manuscript.

When people see my covers, sometimes they ask "How did you do that?" Ok, actually they never ask this. But being a scientist, I'm trained me to produce answers in anticipation of such questions. So, below, I show you how the image was constructed.

The image was published on the cover of PNAS (PNAS 1 May 2012; 109 (18))

Tools

Photoshop CS5, Nik Color Efex Pro 4, Alien Skin Bokeh 2 and a cup of coffee from a Rancilio Silvia.

source images

Below are a few of the images I had the option to work with. These are mouse embryonic blood vessels, with a carotid artery shown in the foreground with endothelial cells in green, vascular smooth muscle cells in red and the nuclei in blue.

Of course, as soon as I saw the images, I realized that there was very little that I needed to do to trigger the viewer's imagination. These photos were great!

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Mouse carotid arteries. (zoom)
Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Mouse carotid arteries. (zoom)
Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Mouse carotid arteries. (zoom)
Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Mouse carotid arteries. (zoom)
Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Mouse carotid arteries. (zoom)
Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Mouse carotid arteries. (zoom)
Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Mouse carotid arteries. (zoom)
Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Mouse carotid arteries. (zoom)
Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Mouse carotid arteries. (zoom)

memories of star trek

Immediately I thought of two episodes of Star Trek (original series): Doomsday Machine and the Immunity Syndrome, as well as of images from the Hubble Telescope.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Enterprise is about to be consumed by a horror tube: a planet killer! (The Doomsday Machine)
Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Enterprise heads into a giant amoeba. Who eats whom? I'll let you guess. (The Immunity Syndrome)
Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Orion nebula (M42) as seen by the Hubble telescope. (zoom)

I though it would be pretty easy to make the artery images look all-outer-spacey. They already looked it.

centerpiece image

And then I saw the image below.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
A particularly spectacular image of a mouse carotid artery. I'm thinking 10 on the Torino scale. (zoom)

constructing the cover

background

The background was created from the two images shown here. The second image was sampled three times, at different rotations.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Images used for background. (zoom)
Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Images used for background. (zoom)
Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Layer composition for background elements. (zoom)

The channel mixer was used to remove the green channel and leave only red and blue.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Background elements for PNAS cover image. (zoom)

middle ground

The next layer was composed of what looked like ribbons of blue gas. This was created by sampling the oval shapes from the source images. Here the red channel was a great source for cloud shapes, and this was the only channel that was kept. The hue was shifted to blue and a curve adjustment was applied to increase the contrast.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
First set of middle ground elements, before adjustments. (zoom)
Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
First set of middle ground elements, after channel adjustments. (zoom)
Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Second set of middle ground elements. (zoom)
Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Layer composition for middle ground elements. (zoom)

When the foreground and middle ground elements were combined, the result was already 40 parsecs away.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Background and foreground elements for PNAS cover image. (zoom)

foreground

The foreground was created from the spectacular comet-like image of a mouse artery. Very little had to be done to make this element look good. It already looked good.

I applied a little blur using Alien Skin's Bokeh 2 to narrow the apparent depth of field, masked out elements at the bottom of the image and removed some of the green channel. The entire blue channel was removed altogether (this gave the tail of the comet a mottled, flame-like appearance).

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Foreground element, before adjustments. (zoom)
Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Foreground element, after channel adjustments. (zoom)
Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Layer composition for foreground element. (zoom)

post processing

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Initial composition of background, middle ground and foreground elements. (zoom)
Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
40% localized application of Nik's Tonal Contrast (Color Efex 4 plugin) to increase structure in red channel. (zoom)
Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
50% blend with Nik's Pro Contrast (Color Efex 4 plugin). (zoom)

And here we have the final image.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Final PNAS cover. Spacey! (zoom)
VIEW ALL

news + thoughts

Optimal experimental design

Tue 31-07-2018
Customize the experiment for the setting instead of adjusting the setting to fit a classical design.

The presence of constraints in experiments, such as sample size restrictions, awkward blocking or disallowed treatment combinations may make using classical designs very difficult or impossible.

Optimal design is a powerful, general purpose alternative for high quality, statistically grounded designs under nonstandard conditions.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Nature Methods Points of Significance column: Optimal experimental design. (read)

We discuss two types of optimal designs (D-optimal and I-optimal) and show how it can be applied to a scenario with sample size and blocking constraints.

Smucker, B., Krzywinski, M. & Altman, N. (2018) Points of significance: Optimal experimental design Nature Methods 15:599–600.

Background reading

Krzywinski, M., Altman, N. (2014) Points of significance: Two factor designs. Nature Methods 11:1187–1188.

Krzywinski, M. & Altman, N. (2014) Points of significance: Analysis of variance (ANOVA) and blocking. Nature Methods 11:699–700.

Krzywinski, M. & Altman, N. (2014) Points of significance: Designing comparative experiments. Nature Methods 11:597–598.

The Whole Earth Cataloguer

Mon 30-07-2018
All the living things.

An illustration of the Tree of Life, showing some of the key branches.

The tree is drawn as a DNA double helix, with bases colored to encode ribosomal RNA genes from various organisms on the tree.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
The circle of life. (read, zoom)

All living things on earth descended from a single organism called LUCA (last universal common ancestor) and inherited LUCA’s genetic code for basic biological functions, such as translating DNA and creating proteins. Constant genetic mutations shuffled and altered this inheritance and added new genetic material—a process that created the diversity of life we see today. The “tree of life” organizes all organisms based on the extent of shuffling and alteration between them. The full tree has millions of branches and every living organism has its own place at one of the leaves in the tree. The simplified tree shown here depicts all three kingdoms of life: bacteria, archaebacteria and eukaryota. For some organisms a grey bar shows when they first appeared in the tree in millions of years (Ma). The double helix winding around the tree encodes highly conserved ribosomal RNA genes from various organisms.

Johnson, H.L. (2018) The Whole Earth Cataloguer, Sactown, Jun/Jul, p. 89

Why we can't give up this odd way of typing

Mon 30-07-2018
All fingers report to home row.

An article about keyboard layouts and the history and persistence of QWERTY.

My Carpalx keyboard optimization software is mentioned along with my World's Most Difficult Layout: TNWMLC. True typing hell.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
TNWMLC requires seriously flexible digits. It’s 87% more difficult than using a standard Qwerty keyboard, according to Martin Krzywinski, who created it (Credit: Ben Nelms). (read)

McDonald, T. (2018) Why we can't give up this odd way of typing, BBC, 25 May 2018.

Molecular Case Studies Cover

Fri 06-07-2018

The theme of the April issue of Molecular Case Studies is precision oncogenomics. We have three papers in the issue based on work done in our Personalized Oncogenomics Program (POG).

The covers of Molecular Case Studies typically show microscopy images, with some shown in a more abstract fashion. There's also the occasional Circos plot.

I've previously taken a more fine-art approach to cover design, such for those of Nature, Genome Research and Trends in Genetics. I've used microscopy images to create a cover for PNAS—the one that made biology look like astrophysics—and thought that this is kind of material I'd start with for the MCS cover.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Cover design for Apr 2018 issue of Molecular Case Studies. (details)