Martin Krzywinski / Canada's Michael Smith Genome Sciences Centre / mkweb.bcgsc.ca Martin Krzywinski / Canada's Michael Smith Genome Sciences Centre / mkweb.bcgsc.ca - contact me Martin Krzywinski / Canada's Michael Smith Genome Sciences Centre / mkweb.bcgsc.ca on Twitter Martin Krzywinski / Canada's Michael Smith Genome Sciences Centre / mkweb.bcgsc.ca - Lumondo Photography Martin Krzywinski / Canada's Michael Smith Genome Sciences Centre / mkweb.bcgsc.ca - Pi Art Martin Krzywinski / Canada's Michael Smith Genome Sciences Centre / mkweb.bcgsc.ca - Hilbertonians - Creatures on the Hilbert CurveMartin Krzywinski / Canada's Michael Smith Genome Sciences Centre / mkweb.bcgsc.ca - Pi Day 2020 - Piku
Here we are now at the middle of the fourth large part of this talk.Pepe Deluxeget nowheremore quotes

mouse veins: curious


Martin Krzywinski / Canada's Michael Smith Genome Sciences Centre / mkweb.bcgsc.ca

2020 `\pi` day art and the piku


visualization + design

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Cover image accompanying our article on mouse vasculature development. Biology turns astrophysical. PNAS 1 May 2012; 109 (18) (zoom, PNAS)

Creating the PNAS Cover

One of my goals in life, which I can now say has been accomplished, is to make biology look like astrophysics. Call it my love for the Torino Impact Hazard Scale.

Recently, I was given an opportunity to attend to this (admittedly vague) goal when Linda Chang from Aly Karsan's group approached me with some microscopy photos of mouse veins. I was asked to do "something" with these images for a cover submission to accompany the manuscript.

When people see my covers, sometimes they ask "How did you do that?" Ok, actually they never ask this. But being a scientist, I'm trained me to produce answers in anticipation of such questions. So, below, I show you how the image was constructed.

The image was published on the cover of PNAS (PNAS 1 May 2012; 109 (18))

Tools

Photoshop CS5, Nik Color Efex Pro 4, Alien Skin Bokeh 2 and a cup of coffee from a Rancilio Silvia.

source images

Below are a few of the images I had the option to work with. These are mouse embryonic blood vessels, with a carotid artery shown in the foreground with endothelial cells in green, vascular smooth muscle cells in red and the nuclei in blue.

Of course, as soon as I saw the images, I realized that there was very little that I needed to do to trigger the viewer's imagination. These photos were great!

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Mouse carotid arteries. (zoom)
Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Mouse carotid arteries. (zoom)
Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Mouse carotid arteries. (zoom)
Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Mouse carotid arteries. (zoom)
Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Mouse carotid arteries. (zoom)
Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Mouse carotid arteries. (zoom)
Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Mouse carotid arteries. (zoom)
Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Mouse carotid arteries. (zoom)
Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Mouse carotid arteries. (zoom)

memories of star trek

Immediately I thought of two episodes of Star Trek (original series): Doomsday Machine and the Immunity Syndrome, as well as of images from the Hubble Telescope.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Enterprise is about to be consumed by a horror tube: a planet killer! (The Doomsday Machine)
Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Enterprise heads into a giant amoeba. Who eats whom? I'll let you guess. (The Immunity Syndrome)
Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Orion nebula (M42) as seen by the Hubble telescope. (zoom)

I though it would be pretty easy to make the artery images look all-outer-spacey. They already looked it.

centerpiece image

And then I saw the image below.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
A particularly spectacular image of a mouse carotid artery. I'm thinking 10 on the Torino scale. (zoom)

constructing the cover

background

The background was created from the two images shown here. The second image was sampled three times, at different rotations.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Images used for background. (zoom)
Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Images used for background. (zoom)
Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Layer composition for background elements. (zoom)

The channel mixer was used to remove the green channel and leave only red and blue.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Background elements for PNAS cover image. (zoom)

middle ground

The next layer was composed of what looked like ribbons of blue gas. This was created by sampling the oval shapes from the source images. Here the red channel was a great source for cloud shapes, and this was the only channel that was kept. The hue was shifted to blue and a curve adjustment was applied to increase the contrast.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
First set of middle ground elements, before adjustments. (zoom)
Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
First set of middle ground elements, after channel adjustments. (zoom)
Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Second set of middle ground elements. (zoom)
Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Layer composition for middle ground elements. (zoom)

When the foreground and middle ground elements were combined, the result was already 40 parsecs away.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Background and foreground elements for PNAS cover image. (zoom)

foreground

The foreground was created from the spectacular comet-like image of a mouse artery. Very little had to be done to make this element look good. It already looked good.

I applied a little blur using Alien Skin's Bokeh 2 to narrow the apparent depth of field, masked out elements at the bottom of the image and removed some of the green channel. The entire blue channel was removed altogether (this gave the tail of the comet a mottled, flame-like appearance).

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Foreground element, before adjustments. (zoom)
Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Foreground element, after channel adjustments. (zoom)
Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Layer composition for foreground element. (zoom)

post processing

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Initial composition of background, middle ground and foreground elements. (zoom)
Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
40% localized application of Nik's Tonal Contrast (Color Efex 4 plugin) to increase structure in red channel. (zoom)
Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
50% blend with Nik's Pro Contrast (Color Efex 4 plugin). (zoom)

And here we have the final image.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Final PNAS cover. Spacey! (zoom)

VIEW ALL

news + thoughts

The Outbreak Poems

Sat 04-04-2020

I'm writing poetry daily to put my feelings into words more often during the COVID-19 outbreak.

Patience but
know
where to put it.
Favourite 
looks
words tastes phrases
ex
foreign origins.
Melody
same
feelings different.
Desire
life
remote control.
Sun rays burn
off
night dust into
day.
Sanitize
in
perfection now.
Door closes
next
next door closes
next
nothing is left open.
One of the
pair
is from the other.
Eyes look at
eyes
and see themselves.
Look back and
pass
destinations.

Read the poems and learn what a piku is.

Deadly Genomes: Genome Structure and Size of Harmful Bacteria and Viruses

Tue 17-03-2020

A poster full of epidemiological worry and statistics. Now updated with the genome of SARS-CoV-2 and COVID-19 case statistics as of 3 March 2020.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Deadly Genomes: Genome Structure and Size of Harmful Bacteria and Viruses (zoom)

Bacterial and viral genomes of various diseases are drawn as paths with color encoding local GC content and curvature encoding local repeat content. Position of the genome encodes prevalence and mortality rate.

The deadly genomes collection has been updated with a posters of the genomes of SARS-CoV-2, the novel coronavirus that causes COVID-19.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Genomes of 56 SARS-CoV-2 coronaviruses that causes COVID-19.
Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Ball of 56 SARS-CoV-2 coronaviruses that causes COVID-19.
Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
The first SARS-CoV-2 genome (MT019529) to be sequenced appears first on the poster.

Using Circos in Galaxy Australia Workshop

Wed 04-03-2020

A workshop in using the Circos Galaxy wrapper by Hiltemann and Rasche. Event organized by Australian Biocommons.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Using Circos in Galaxy Australia workshop. (zoom)

Download workshop slides.

Galaxy wrapper training materials, Saskia Hiltemann, Helena Rasche, 2020 Visualisation with Circos (Galaxy Training Materials).

Essence of Data Visualization in Bioinformatics Webinar

Thu 20-02-2020

My webinar on fundamental concepts in data visualization and visual communication of scientific data and concepts. Event organized by Australian Biocommons.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Essence of Data Visualization in Bioinformatics webinar. (zoom)

Download webinar slides.