Martin Krzywinski / Genome Sciences Center / Martin Krzywinski / Genome Sciences Center / - contact me Martin Krzywinski / Genome Sciences Center / on Twitter Martin Krzywinski / Genome Sciences Center / - Lumondo Photography Martin Krzywinski / Genome Sciences Center / - Pi Art Martin Krzywinski / Genome Sciences Center / - Hilbertonians - Creatures on the Hilbert Curve
This love's a nameless dream.Cocteau Twinstry to figure it outmore quotes

In Silico Flurries: Computing a world of snow. Scientific American. 23 December 2017

visualization + design

Martin Krzywinski @MKrzywinski
The 2018 Pi Day art celebrates the 30th anniversary of `\pi` day and connects friends stitching road maps from around the world. Pack a sandwich and let's go!

`\pi` Day 2016 Art Posters

Pi Day 2016 Art Posters
 / Martin Krzywinski @MKrzywinski
2018 `\pi` day shrinks the world and celebrates road trips by stitching streets from around the world together. In this version, we look at the boonies, burbs and boutique of `\pi` by drawing progressively denser patches of streets. Let's go places.

Pi Day 2016 Art Posters
 / Martin Krzywinski @MKrzywinski
2017 `\pi` day

Pi Day 2016 Art Posters
 / Martin Krzywinski @MKrzywinski
2016 `\pi` approximation day

Pi Day 2016 Art Posters
 / Martin Krzywinski @MKrzywinski
2016 `\pi` day

Pi Day 2016 Art Posters
 / Martin Krzywinski @MKrzywinski
2015 `\pi` day

Pi Day 2016 Art Posters
 / Martin Krzywinski @MKrzywinski
2014 `\pi` approx day

Pi Day 2016 Art Posters
 / Martin Krzywinski @MKrzywinski
2014 `\pi` day

Pi Day 2016 Art Posters
 / Martin Krzywinski @MKrzywinski
2013 `\pi` day

Pi Day 2016 Art Posters
 / Martin Krzywinski @MKrzywinski
Circular `\pi` art

On March 14th celebrate `\pi` Day. Hug `\pi`—find a way to do it.

For those who favour `\tau=2\pi` will have to postpone celebrations until July 26th. That's what you get for thinking that `\pi` is wrong.

If you're not into details, you may opt to party on July 22nd, which is `\pi` approximation day (`\pi` ≈ 22/7). It's 20% more accurate that the official `\pi` day!

Finally, if you believe that `\pi = 3`, you should read why `\pi` is not equal to 3.

Martin Krzywinski @MKrzywinski
All art posters are available for purchase.
I take custom requests.

This year's `\pi` day art collection celebrates not only the digit but also one of the fundamental forces in nature: gravity.

In February of 2016, for the first time, gravitational waves were detected at the Laser Interferometer Gravitational-Wave Observatory (LIGO).

The signal in the detector was sonified—a process by which any data can be encoded into sound to provide hints at patterns and structure that we might otherwise miss—and we finally heard what two black holes sound like. A buzz and chirp.

The art is featured in the Gravity of Pi article on the Scientific American SA Visual blog.

this year's theme music

All the art was processed while listening to Roses by Coeur de Pirate, a brilliant female French-Canadian songwriter, who sounds like a mix of Patricia Kaas and Lhasa. The lyrics Oublie-moi (Forget me) are fitting with this year's theme of gravity.

Mais laisse-moi tomber, laisse-nous tomber
Laisse la nuit trembler en moi
Laisse-moi tomber, laisse nous tomber
Cette fois

But let me fall, let us fall
Let the night tremble in me
Let me fall, let us fall
This time

simulating gravity in 2d

The gravitational force between two masses `m_1` located at `(x_1,y_1)` and `m_2` located at `(x_2,y_2)` is given by

$$F = \frac{G m_1 m_2}{r^2} \tag{1} $$

where `r` is the distance between the masses given by

$$r = \sqrt{ \Delta x ^2 + \Delta y ^2 } = \sqrt{ (x_2-x_1)^2 + (y_2-y_1)^2 } \tag{2} $$

The force is directed along the vector formed by `r` and can be decomposed into `x` and `y` components using \begin{align} F_x &= F \frac{ \Delta x}{r} = F \frac{x_2-x_1}{r} \tag{3} \\ F_y &= F \frac{ \Delta y}{r} =F \frac{y_2-y_1}{r} \tag{4} \end{align}

The acceleration of each mass can be obtained using `F = ma` and similarly decomposed into `x` and `y` components \begin{align} a_{1x} &= \frac { F_{1x} }{ m_1} = \frac{G m_2 \Delta x}{r^3} \tag{5} \\ a_{1y} &= \frac { F_{1y} }{ m_1} = \frac{G m_2 \Delta y}{r^3} \tag{6} \\ a_{2x} &= \frac { F_{2x} }{ m_2} = -\frac{G m_1 \Delta x}{r^3} \tag{7} \\ a_{2y} &= \frac { F_{2y} }{ m_2} = -\frac{G m_1 \Delta y}{r^3} \tag{8} \end{align}

When there are `n` masses in the system, the acceleration of mass `i` is the sum of the accelerations due to all other masses \begin{align} a_{ix} &= \sum_{i \ne j} \frac{G m_j \Delta x_{ij}}{r_{ij}^3} \tag{9} \\ a_{iy} &= \sum_{i \ne j} \frac{G m_j \Delta y_{ij}}{r_{ij}^3} \tag{10} \end{align}

The equations of motion for the masses over a period of time `\Delta t` are

\begin{align} \Delta v_x &= \Delta t a_x \tag{11} \\ \Delta v_y &= \Delta t a_y \tag{12} \\ \Delta x &= \Delta t \left( v_x + a_x \frac{\Delta t}{2} \right) \tag{13} \\ \Delta y &= \Delta t \left( v_y + a_y \frac{\Delta t}{2} \right) \tag{14} \end{align}

numerical simulation

There are various ways in which the numerical simulation can be performed. The Euler, Verlet, Runge-Kutta methods are perhaps the most common. I use the Verlet approach.

Using the equations of motions above, the Verlet simulation goes as follows

  1. calculate acceleration, `a_1` (eq 9,10)
  2. update position (eq 13,14)
  3. calculate new acceleration, `a_2` (eq 9,10)
  4. update velocity using `(a_1+a_2)/2` (eq 7,8)

The masses are initially uniformly distributed on a circle and given a zero initial velocity or a normally distributed random velocity.

I ran about 10,000 individual simulations with different values of `n` and `k` and collected ones that stood out as pretty.


The size of a mass is taken to be `s = m^{1/3}`. When two masses, `m_1` and `m_2` come within a distance of `\left( s_1 + s_2 \right)(1-z)` of each other, they collide. Here `z` is a collision margin parameter that I set to either `z=0` or `z=0.25`.

During the collision, a new body is created with mass `M = m_1 + m_2` given a speed that conserves momentum in the collision. \begin{align} v_x &= \frac{m_1 v_{1x} + m_2 v_{2x} }{M} \\ v_y &= \frac{m_1 v_{1y} + m_2 v_{2y} }{M} \end{align}


For my simulation, the following values are used

  • `G = 100`
  • mass for each digit, `d` is `(1+d)^k`
  • masses placed on circle with radius `216`
  • when randomized, `(v_x,v_y) \sim N(0,1)`
  • `\Delta t = 0.01`
  • simulation runs for up to 100,000 steps
  • canvas size is `1440 \times 1440`

news + thoughts

Molecular Case Studies Cover

Fri 06-07-2018

The theme of the April issue of Molecular Case Studies is precision oncogenomics. We have three papers in the issue based on work done in our Personalized Oncogenomics Program (POG).

The covers of Molecular Case Studies typically show microscopy images, with some shown in a more abstract fashion. There's also the occasional Circos plot.

I've previously taken a more fine-art approach to cover design, such for those of Nature, Genome Research and Trends in Genetics. I've used microscopy images to create a cover for PNAS—the one that made biology look like astrophysics—and thought that this is kind of material I'd start with for the MCS cover.

Martin Krzywinski @MKrzywinski
Cover design for Apr 2018 issue of Molecular Case Studies. (details)

Happy 2018 `\tau` Day—Art for everyone

Wed 27-06-2018
Martin Krzywinski @MKrzywinski
You know what day it is. (details)

Universe Superclusters and Voids

Mon 25-06-2018

A map of the nearby superclusters and voids in the Unvierse.

By "nearby" I mean within 6,000 million light-years.

Martin Krzywinski @MKrzywinski
The Universe — Superclustesr and Voids. The two supergalactic hemispheres showing Abell clusters, superclusters and voids within a distance of 6,000 million light-years from the Milky Way. (details)

Datavis for your feet—the 178.75 lb socks

Sat 23-06-2018

In the past, I've been tangentially involved in fashion design. I've also been more directly involved in fashion photography.

It was now time to design my first ... pair of socks.

Martin Krzywinski @MKrzywinski
Some datavis for your feet: the 178.75 lb socks. (get some)

In collaboration with Flux Socks, the design features the colors and relative thicknesses of Rogue olympic weightlifting plates. The first four plates in the stack are the 55, 45, 35, and 25 competition plates. The top 4 plates are the 10, 5, 2.5 and 1.25 lb change plates.

The perceived weight of each sock is 178.75 lb and 357.5 lb for the pair.

The actual weight is much less.

Genes Behind Psychiatric Disorders

Sun 24-06-2018

Find patterns behind gene expression and disease.

Expression, correlation and network module membership of 11,000+ genes and 5 psychiatric disorders in about 6" x 7" on a single page.

Design tip: Stay calm.

Martin Krzywinski @MKrzywinski
Martin Krzywinski @MKrzywinski
An analysis of dust reveals how the presence of men, women, dogs and cats affects the variety of bacteria in a household. Appears on Graphic Science page in December 2015 issue of Scientific American.

More of my American Scientific Graphic Science designs

Gandal M.J. et al. Shared Molecular Neuropathology Across Major Psychiatric Disorders Parallels Polygenic Overlap Science 359 693–697 (2018)