view updates

Distractions and amusements, with a sandwich and coffee.

syncopation & accordion
•
• like France, but no dog poop
• more quotes

On March 14th celebrate Pi Day. Hug `\pi`—find a way to do it.

For those who favour `\tau=2\pi` will have to postpone celebrations until July 26th. That's what you get for thinking that `\pi` is wrong.

If you're not into details, you may opt to party on July 22nd, which is `\pi` approximation day (`\pi` ≈ 22/7). It's 20% more accurate that the official Pi day!

Finally, if you believe that `\pi = 3`, you should read why `\pi` is not equal to 3.

This year's `\pi` day art collection celebrates not only the digit but also one of the fundamental forces in nature: gravity.

In February of 2016, for the first time, gravitational waves were detected at the Laser Interferometer Gravitational-Wave Observatory (LIGO).

The signal in the detector was sonified—a process by which any data can be encoded into sound to provide hints at patterns and structure that we might otherwise miss—and we finally heard what two black holes sound like. A buzz and chirp.

The art is featured in the Gravity of Pi article on the Scientific American SA Visual blog.

All the art was processed while listening to Roses by Coeur de Pirate, a brilliant female French-Canadian songwriter, who sounds like a mix of Patricia Kaas and Lhasa. The lyrics Oublie-moi (Forget me) are fitting with this year's theme of gravity.

Mais laisse-moi tomber, laisse-nous tomber

Laisse la nuit trembler en moi

Laisse-moi tomber, laisse nous tomber

Cette fois

But let me fall, let us fall

Let the night tremble in me

Let me fall, let us fall

This time

The number `\pi` appears in the fundamental equation of general relativity, which relates gravity (left side) to energy and momentum (right side).

`R_{\mu \nu} - \tfrac{1}{2} Rg_{\mu\nu} = 8 \pi G T_{\mu \nu}`

The reason why `\pi` appears has to do with the need to include the surface area of the sphere, `4 \pi r^2` in the mathematics. This is very nicely described in Sean Carrol's article Einstein and `\pi`.

Let's make the digits of `\pi` into masses, throw them into space, and watch gravity make them collide and orbit each other. Read about the details of the simulation and look at the posters.

As the number of digits is increased, more elaborate patterns arise. Here is one simulation using 100 digits.

How about 1000 digits? In this simulation the masses are similar and they all collide within the circle.

*It is important to understand both what a classification metric expresses and what it hides.*

We examine various metrics use to assess the performance of a classifier. We show that a single metric is insufficient to capture performance—for any metric, a variety of scenarios yield the same value.

We also discuss ROC and AUC curves and how their interpretation changes based on class balance.

Altman, N. & Krzywinski, M. (2016) Points of Significance: Classifier evaluation. *Nature Methods* **13**:603-604.

Today is the day and it's hardly an approximation. In fact, `22/7` is 20% more accurate of a representation of `\pi` than `3.14`!

Time to celebrate, graphically. This year I do so with perfect packing of circles that embody the approximation.

By warping the circle by 8% along one axis, we can create a shape whose ratio of circumference to diameter, taken as twice the average radius, is 22/7.

If you prefer something more accurate, check out art from previous `\pi` days: 2013 `\pi` Day and 2014 `\pi` Day, 2015 `\pi` Day, and 2016 `\pi` Day.

*Regression can be used on categorical responses to estimate probabilities and to classify.*

The next column in our series on regression deals with how to classify categorical data.

We show how linear regression can be used for classification and demonstrate that it can be unreliable in the presence of outliers. Using a logistic regression, which fits a linear model to the log odds ratio, improves robustness.

Logistic regression is solved numerically and in most cases, the maximum-likelihood estimates are unique and optimal. However, when the classes are perfectly separable, the numerical approach fails because there is an infinite number of solutions.

Altman, N. & Krzywinski, M. (2016) Points of Significance: Logistic regression. *Nature Methods* **13**:541-542.

Altman, N. & Krzywinski, M. (2016) Points of Significance: Regression diagnostics? *Nature Methods* **13**:385-386.

Altman, N. & Krzywinski, M. (2015) Points of Significance: Multiple Linear Regression *Nature Methods* **12**:1103-1104.

Altman, N. & Krzywinski, M. (2015) Points of significance: Simple Linear Regression *Nature Methods* **12**:999-1000.

Genomic instability is one of the defining characteristics of cancer and within a tumor, which is an ever-evolving population of cells, there are many genomes. Mutations accumulate and propagate to create subpopulations and these groups of cells, called clones, may respond differently to treatment.

It is now possible to sequence individual cells within a tumor to create a profile of genomes. This profile changes with time, both in the kinds of mutation that are found and in their proportion in the overall population.

Clone evolution diagrams visualize these data. These diagrams can be qualitative, showing only trends, or quantitative, showing temporal and population changes to scale. In this Molecular Cell forum article I provide guidelines for drawing these diagrams, focusing with how to use color and navigational elements, such as grids, to clarify the relationships between clones.

I'd like to thank Maia Smith and Cydney Nielsen for assistance in preparing some of the figures in the paper.

Krzywinski, M. (2016) Visualizing Clonal Evolution in Cancer. Mol Cell 62:652-656.

*Limitations in print resolution and visual acuity impose limits on data density and detail.*

Your printer can print at 1,200 or 2,400 dots per inch. At reading distance, your reader can resolve about 200–300 lines per inch. This large gap—how finely we can print and how well we can see—can create problems when we don't take visual acuity into account.

The column provides some guidelines—particularly relevant when showing whole-genome data, where the scale of elements of interest such as genes is below the visual acuity limit—for binning data so that they are represented by elements that can be comfortably discerned.

Krzywinski, M. (2016) Points of view: Binning high-resolution data. Nature Methods 13:463.

*Residual plots can be used to validate assumptions about the regression model.*

Continuing with our series on regression, we look at how you can identify issues in your regression model.

The difference between the observed value and the model's predicted value is the residual, `r = y_i - \hat{y}_i`, a very useful quantity to identify the effects of outliers and trends in the data that might suggest your model is inadequate.

We also discuss normal probability plots (or Q-Q plots) and show how these can be used to check that the residuals are normally distributed, which is one of the assumptions of regression (constant variance being another).

Altman, N. & Krzywinski, M. (2016) Points of Significance: Analyzing outliers: Influential or nuisance? *Nature Methods* **13**:281-282.

Altman, N. & Krzywinski, M. (2015) Points of Significance: Multiple Linear Regression *Nature Methods* **12**:1103-1104.

Altman, N. & Krzywinski, M. (2015) Points of significance: Simple Linear Regression *Nature Methods* **12**:999-1000.