Distractions and amusements, with a sandwich and coffee.
On March 14th celebrate `\pi` Day. Hug `\pi`—find a way to do it.
For those who favour `\tau=2\pi` will have to postpone celebrations until July 26th. That's what you get for thinking that `\pi` is wrong. I sympathize with this position and have `\tau` day art too!
If you're not into details, you may opt to party on July 22nd, which is `\pi` approximation day (`\pi` ≈ 22/7). It's 20% more accurate that the official `\pi` day!
Finally, if you believe that `\pi = 3`, you should read why `\pi` is not equal to 3.
For the 2014 `\pi` day, two styles of posters are available: folded paths and frequency circles.
The folded paths show `\pi` on a path that maximizes adjacent prime digits and were created using a protein-folding algorithm.
The frequency circles colourfully depict the ratio of digits in groupings of 3 or 6. Oh, look, there's the Feynman Point!
Some of the posters for this year's Pi Day art expand on the work from last year, which showed Pi as colored circles on a grid.
For those of you who really liked this minimalist depiction of π , I've created something slightly more complicated, but still stylish: Pi digit frequency circles. These are pretty and easy to understand. If you like random distribution of colors (and circles), these are your thing.
Briefly, each set of concentric rings corresponds to a sequence of digits in
π
, such as 3 (314 159 265 ...
) or 6 (314159 265358 ...
). The number of times a given digit is seen within a sequence is encoded by the thickness of the ring. Rings are ordered outward in numerical order of their digits (i.e. 0 on the inside, 9 on the outside).
For some posters, the first digit (3) is offset from the rest of the groups. Look for the high count of 9s at the end of posters showing π up to the Feynman Point (6 9s at digit 762). For posters that show more digits, try to find the Feynman Point somewhere among the groups.
The Feynman point is at an extremely interesting location. If we group the digits of
π
into groups of 6, then the first 999999
falls exactly into the 128th group. But, if we group the digits by 3s, then the two groups 999
and 999
fall exactly into groups 255 and 256 (a power of 2!), which can be arranged into a perfect square of 16 x 16 groups.
The Feynman point is a specific case of the general case in which the digit d appears n times in a row. I call this the (d=7,n=6) and provide a list of all these points in the first 1,000,000 digits. Points with a large n value will contribute significantly to the frequency distribution of the digit group they fall in. If the sequence is split across groups, its impact is lower.
Clear, concise, legible and compelling.
Making a scientific graphical abstract? Refer to my practical design guidelines and redesign examples to improve organization, design and clarity of your graphical abstracts.
An in-depth look at my process of reacting to a bad figure — how I design a poster and tell data stories.
Building on the method I used to analyze the 2008, 2012 and 2016 U.S. Presidential and Vice Presidential debates, I explore word usagein the 2020 Debates between Donald Trump and Joe Biden.
We are celebrating the publication of our 50th column!
To all our coauthors — thank you and see you in the next column!
When modelling epidemics, some uncertainties matter more than others.
Public health policy is always hampered by uncertainty. During a novel outbreak, nearly everything will be uncertain: the mode of transmission, the duration and population variability of latency, infection and protective immunity and, critically, whether the outbreak will fade out or turn into a major epidemic.
The uncertainty may be structural (which model?), parametric (what is `R_0`?), and/or operational (how well do masks work?).
This month, we continue our exploration of epidemiological models and look at how uncertainty affects forecasts of disease dynamics and optimization of intervention strategies.
We show how the impact of the uncertainty on any choice in strategy can be expressed using the Expected Value of Perfect Information (EVPI), which is the potential improvement in outcomes that could be obtained if the uncertainty is resolved before making a decision on the intervention strategy. In other words, by how much could we potentially increase effectiveness of our choice (e.g. lowering total disease burden) if we knew which model best reflects reality?
This column has an interactive supplemental component (download code) that allows you to explore the impact of uncertainty in `R_0` and immunity duration on timing and size of epidemic waves and the total burden of the outbreak and calculate EVPI for various outbreak models and scenarios.
Bjørnstad, O.N., Shea, K., Krzywinski, M. & Altman, N. (2020) Points of significance: Uncertainty and the management of epidemics. Nature Methods 17.
Bjørnstad, O.N., Shea, K., Krzywinski, M. & Altman, N. (2020) Points of significance: Modeling infectious epidemics. Nature Methods 17:455–456.
Bjørnstad, O.N., Shea, K., Krzywinski, M. & Altman, N. (2020) Points of significance: The SEIRS model for infectious disease dynamics. Nature Methods 17:557–558.
Our design on the cover of Nature Genetics's August 2020 issue is “Dichotomy of Chromatin in Color” . Thanks to Dr. Andy Mungall for suggesting this terrific title.
The cover design accompanies our report in the issue Gagliardi, A., Porter, V.L., Zong, Z. et al. (2020) Analysis of Ugandan cervical carcinomas identifies human papillomavirus clade–specific epigenome and transcriptome landscapes. Nature Genetics 52:800–810.