view updates

Distractions and amusements, with a sandwich and coffee.

Where am I supposed to go? Where was I supposed to know?
•
• get lost in questions
• more quotes

On March 14th celebrate `\pi` Day. Hug `\pi`—find a way to do it.

For those who favour `\tau=2\pi` will have to postpone celebrations until July 26th. That's what you get for thinking that `\pi` is wrong.

If you're not into details, you may opt to party on July 22nd, which is `\pi` approximation day (`\pi` ≈ 22/7). It's 20% more accurate that the official `\pi` day!

Finally, if you believe that `\pi = 3`, you should read why `\pi` is not equal to 3.

2013 was the first year in which I made `\pi` day art. It was a year of dots and love.

René Hansen has created an interactive version of this year's posters! Why not go to the Feynman point directly!

The posters explore the relationship between adjacent digits in `\pi`, which are encoded by color using the scheme shown above. The design appears to shimmer due to the luminance effect. In some versions of the poster, adjacent identical (or similar) digits are connected by lines.

The recipe for each poster is included in its figure legend. It gives the color of the `i`th outer and inner circles. `\pi_i` is used to represent the `i`th digit of `\pi`. For example, the recipe

`\pi_i` / `\pi_{i+1}`

corresponds to the case where outer circle color encodes the `i`th digit and the inner circle color encodes the next digit `i+1`th. In this scheme, inner and outer circles of adjacent positions have the same color.

The posters were generated automatically with a Perl script that generated SVG files. Post processing and layout was done in Illustrator. If you are interested in depicting your favourite number this way, let me know.

The design was inspired by the beautiful AIDS posters by Elena Miska.

I calculated `pi` to 13,099,586 digits and then I found love.

It's fun to look for digits or look for words in `\pi`.

Just don't get carried away. Because `\pi` is likely normal in base 10, all words and all patterns appear in it, somewhere.

I wanted to know the first time that "*love*" appears in `\pi`. When encoded using the scheme a=0, b=1, ..., z=25, "*love*" is the digit sequence 1114214.

This sequence appears first at position 13,099,586 (...8921991631**1114214**8187311392...). And, of course, infinitely many times after that.

Curiously, "hate" (0700194) appears well before love, at digit 514,717. In the first 200,000,000 digit "hate" appears 23 times, 6 times more than "love".

If you use the scheme a=1, b=2, ..., z=26, then "*love*" becomes 1215225. This is first seen at 6,317,696 (...6103119129**1215225**6606850141...).

In this redesign of a pie chart figure from a Nature Medicine article [1], I look at how to organize and present a large number of categories.

I first discuss some of the benefits of a pie chart—there are few and specific—and its shortcomings—there are few but fundamental.

I then walk through the redesign process by showing how the tumor categories can be shown more clearly if they are first aggregated into a small number groups.

(bottom left) Figure 2b from Zehir et al. Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. (2017) Nature Medicine doi:10.1038/nm.4333

After 30 columns, this is our first one without a single figure. Sometimes a table is all you need.

In this column, we discuss nominal categorical data, in which data points are assigned to categories in which there is no implied order. We introduce one-way and two-way tables and the `\chi^2` and Fisher's exact tests.

Altman, N. & Krzywinski, M. (2017) Points of Significance: Tabular data. *Nature Methods* **14**:329–330.

on a brim of echo,

capsized chamber

drawn into our constellation, and cooling.

—Paolo Marcazzan

Celebrate `\pi` Day (March 14th) with star chart of the digits. The charts draw 40,000 stars generated from the first 12 million digits.

The 80 constellations are extinct animals and plants. Here you'll find old friends and new stories. Read about how Desmodus is always trying to escape or how Megalodon terrorizes the poor Tecopa! Most constellations have a story.

This year I collaborate with Paolo Marcazzan, a Canadian poet, who contributes a poem, Of Black Body, about space and things we might find and lose there.

Check out art from previous years: 2013 `\pi` Day and 2014 `\pi` Day, 2015 `\pi` Day and and 2016 `\pi` Day.

Art is science in love.

— E.F. Weisslitz

A behind-the-scenes look at the making of our stereoscopic images which were at display at the AGBT 2017 Conference in February. The art is a creative collaboration with Becton Dickinson and The Linus Group.

Its creation began with the concept of differences and my writeup of the creative and design process focuses on storytelling and how concept of differences is incorporated into the art.

Oh, and this might be a good time to pick up some red-blue 3D glasses.

This month we continue our discussion about `P` values and focus on the fact that `P` value is a probability statement about the observed sample in the context of a hypothesis, not about the hypothesis being tested.

Given that we are always interested in making inferences about hypotheses, we discuss how `P` values can be used to do this by way of the Benjamin-Berger bound, `\bar{B}` on the Bayes factor, `B`.

Heuristics such as these are valuable in helping to interpret `P` values, though we stress that `P` values vary from sample to sample and hence many sources of evidence need to be examined before drawing scientific conclusions.

Altman, N. & Krzywinski, M. (2017) Points of Significance: Interpreting P values. *Nature Methods* **14**:213–214.

Krzywinski, M. & Altman, N. (2017) Points of significance: P values and the search for significance. Nature Methods 14:3–4.

Krzywinski, M. & Altman, N. (2013) Points of significance: Significance, P values and t–tests. Nature Methods 10:1041–1042.

Another collection of typographical posters. These ones really ask you to look.

The charts show a variety of interesting symbols and operators found in science and math. The design is in the style of a Snellen chart and typset with the Rockwell font.