latest news

Distractions and amusements, with a sandwich and coffee.

Twenty — minutes — maybe — more.
•
• choose four words
• more quotes

They serve as the form for The Outbreak Poems.

On March 14th celebrate `\pi` Day. Hug `\pi`—find a way to do it.

For those who favour `\tau=2\pi` will have to postpone celebrations until July 26th. That's what you get for thinking that `\pi` is wrong. I sympathize with this position and have `\tau` day art too!

If you're not into details, you may opt to party on July 22nd, which is `\pi` approximation day (`\pi` ≈ 22/7). It's 20% more accurate that the official `\pi` day!

Finally, if you believe that `\pi = 3`, you should read why `\pi` is not equal to 3.

2013 was the first year in which I made `\pi` day art. It was a year of dots and love.

René Hansen has created an interactive version of this year's posters! Why not go to the Feynman point directly!

The posters explore the relationship between adjacent digits in `\pi`, which are encoded by color using the scheme shown above. The design appears to shimmer due to the luminance effect. In some versions of the poster, adjacent identical (or similar) digits are connected by lines.

The recipe for each poster is included in its figure legend. It gives the color of the `i`th outer and inner circles. `\pi_i` is used to represent the `i`th digit of `\pi`. For example, the recipe

`\pi_i` / `\pi_{i+1}`

corresponds to the case where outer circle color encodes the `i`th digit and the inner circle color encodes the next digit `i+1`th. In this scheme, inner and outer circles of adjacent positions have the same color.

The posters were generated automatically with a Perl script that generated SVG files. Post processing and layout was done in Illustrator. If you are interested in depicting your favourite number this way, let me know.

The design was inspired by the beautiful AIDS posters by Elena Miska.

I calculated `pi` to 13,099,586 digits and then I found love.

It's fun to look for digits or look for words in `\pi`.

Just don't get carried away. Because `\pi` is likely normal in base 10, all words and all patterns appear in it, somewhere.

I wanted to know the first time that "*love*" appears in `\pi`. When encoded using the scheme a=0, b=1, ..., z=25, "*love*" is the digit sequence 1114214.

This sequence appears first at position 13,099,586 (...8921991631**1114214**8187311392...). And, of course, infinitely many times after that.

Curiously, "hate" (0700194) appears well before love, at digit 514,717. In the first 200,000,000 digit "hate" appears 23 times, 6 times more than "love".

If you use the scheme a=1, b=2, ..., z=26, then "*love*" becomes 1215225. This is first seen at 6,317,696 (...6103119129**1215225**6606850141...).

*Clear, concise, legible and compelling.*

The PDF template is a poster about making posters. It provides design, typography and data visualiation tips with minimum fuss. Follow its advice until you have developed enough design sobriety and experience to know when to go your own way.

*Realistic models of epidemics account for latency, loss of immunity, births and deaths.*

We continue with our discussion about epidemic models and show how births, deaths and loss of immunity can create epidemic waves—a periodic fluctuation in the fraction of population that is infected.

This column has an interactive supplemental component (download code) that allows you to explore epidemic waves and introduces the idea of the phase plane, a compact way to understand the evolution of an epidemic over its entire course.

Bjørnstad, O.N., Shea, K., Krzywinski, M. & Altman, N. (2020) Points of significance: The SEIRS model for infectious disease dynamics. *Nature Methods* **17**:557–558.

Bjørnstad, O.N., Shea, K., Krzywinski, M. & Altman, N. (2020) Points of significance: Modeling infectious epidemics. *Nature Methods* **17**:455–456.

*Shifting soundscapes, textures and rhythmic loops produced by laboratory machines.*

In commemoration of the 20th anniversary of Canada's Michael Smith Genome Sciences Centre, Segue was commissioned to create an original composition based on audio recordings from the GSC's laboratory equipment, robots and computers—to make “music” from the noise they produce.

*Genetic sequences of the coronavirus tell story of when the virus arrived in each country and where it came from.*

Our graphic in Scientific American's Graphic Science section in the June 2020 issue shows a phylogenetic tree based on a snapshot of the data model from Nextstrain as of 31 March 2020.

Our design on the cover of Nature Cancer's April 2020 issue shows mutation spectra of patients from the POG570 cohort of 570 individuals with advanced metastatic cancer.

The cover design accompanies our report in the issue Pleasance, E., Titmuss, E., Williamson, L. et al. (2020) Pan-cancer analysis of advanced patient tumors reveals interactions between therapy and genomic landscapes. *Nat Cancer* **1**:452–468.

*Every day sadder and sadder news of its increase. In the City died this week 7496; and of them, 6102 of the plague. But it is feared that the true number of the dead this week is near 10,000 ....*

—Samuel Pepys, 1665

This month, we begin a series of columns on epidemiological models. We start with the basic SIR model, which models the spread of an infection between three groups in a population: susceptible, infected and recovered.

We discuss conditions under which an outbreak occurs, estimates of spread characteristics and the effects that mitigation can play on disease trajectories. We show the trends that arise when "flattenting the curve" by decreasing `R_0`.

This column has an interactive supplemental component (download code) that allows you to explore how the model curves change with parameters such as infectious period, basic reproduction number and vaccination level.

Bjørnstad, O.N., Shea, K., Krzywinski, M. & Altman, N. (2020) Points of significance: Modeling infectious epidemics. *Nature Methods* **17**:455–456.