latest news

Distractions and amusements, with a sandwich and coffee.

Sun is on my face ...a beautiful day without you.
•
• be apart
• more quotes

On March 14th celebrate `\pi` Day. Hug `\pi`—find a way to do it.

For those who favour `\tau=2\pi` will have to postpone celebrations until July 26th. That's what you get for thinking that `\pi` is wrong.

If you're not into details, you may opt to party on July 22nd, which is `\pi` approximation day (`\pi` ≈ 22/7). It's 20% more accurate that the official `\pi` day!

Finally, if you believe that `\pi = 3`, you should read why `\pi` is not equal to 3.

2013 was the first year in which I made `\pi` day art. It was a year of dots and love.

René Hansen has created an interactive version of this year's posters! Why not go to the Feynman point directly!

The posters explore the relationship between adjacent digits in `\pi`, which are encoded by color using the scheme shown above. The design appears to shimmer due to the luminance effect. In some versions of the poster, adjacent identical (or similar) digits are connected by lines.

The recipe for each poster is included in its figure legend. It gives the color of the `i`th outer and inner circles. `\pi_i` is used to represent the `i`th digit of `\pi`. For example, the recipe

`\pi_i` / `\pi_{i+1}`

corresponds to the case where outer circle color encodes the `i`th digit and the inner circle color encodes the next digit `i+1`th. In this scheme, inner and outer circles of adjacent positions have the same color.

The posters were generated automatically with a Perl script that generated SVG files. Post processing and layout was done in Illustrator. If you are interested in depicting your favourite number this way, let me know.

The design was inspired by the beautiful AIDS posters by Elena Miska.

I calculated `pi` to 13,099,586 digits and then I found love.

It's fun to look for digits or look for words in `\pi`.

Just don't get carried away. Because `\pi` is likely normal in base 10, all words and all patterns appear in it, somewhere.

I wanted to know the first time that "*love*" appears in `\pi`. When encoded using the scheme a=0, b=1, ..., z=25, "*love*" is the digit sequence 1114214.

This sequence appears first at position 13,099,586 (...8921991631**1114214**8187311392...). And, of course, infinitely many times after that.

Curiously, "hate" (0700194) appears well before love, at digit 514,717. In the first 200,000,000 digit "hate" appears 23 times, 6 times more than "love".

If you use the scheme a=1, b=2, ..., z=26, then "*love*" becomes 1215225. This is first seen at 6,317,696 (...6103119129**1215225**6606850141...).

The artwork was created in collaboration with my colleagues at the Genome Sciences Center to celebrate the 5 year anniversary of the Personalized Oncogenomics Program (POG).

The Personal Oncogenomics Program (POG) is a collaborative research study including many BC Cancer Agency oncologists, pathologists and other clinicians along with Canada's Michael Smith Genome Sciences Centre with support from BC Cancer Foundation.

The aim of the program is to sequence, analyze and compare the genome of each patient's cancer—the entire DNA and RNA inside tumor cells— in order to understand what is enabling it to identify less toxic and more effective treatment options.

Principal component analysis (PCA) simplifies the complexity in high-dimensional data by reducing its number of dimensions.

To retain trend and patterns in the reduced representation, PCA finds linear combinations of canonical dimensions that maximize the variance of the projection of the data.

PCA is helpful in visualizing high-dimensional data and scatter plots based on 2-dimensional PCA can reveal clusters.

Altman, N. & Krzywinski, M. (2017) Points of Significance: Principal component analysis. *Nature Methods* **14**:641–642.

Altman, N. & Krzywinski, M. (2017) Points of Significance: Clustering. *Nature Methods* **14**:545–546.

Similar to the `h` index in publishing, the `k` index is a measure of fitness performance.

To achieve a `k` index for a movement you must perform `k` unbroken reps at `k`% 1RM.

The expected value for the `k` index is probably somewhere in the range of `k = 26` to `k=35`, with higher values progressively more difficult to achieve.

In my `k` index introduction article I provide detailed explanation, rep scheme table and WOD example.

I've applied the char-rnn recurrent neural network to generate new words, names of drugs and countries.

The effect is intriguing and facetious—yes, those are real words.

But these are not: *necronology*, *abobionalism*, *gabdologist*, and *nonerify*.

These places only exist in the mind: *Conchar and Pobacia*, *Hzuuland*, *New Kain*, *Rabibus and Megee Islands*, *Sentip and Sitina*, *Sinistan* and Urzenia.

And these are the imaginary afflictions of the imagination: *ictophobia*, *myconomascophobia*, and *talmatomania*.

And these, of the body: *ophalosis*, *icabulosis*, *mediatopathy* and *bellotalgia*.

Want to name your baby? Or someone else's baby? Try *Ginavietta Xilly Anganelel* or *Ferandulde Hommanloco Kictortick*.

When taking new therapeutics, never mix *salivac* and *labromine*. And don't forget that *abadarone* is best taken on an empty stomach.

And nothing increases the chance of getting that grant funded than proposing the study of a new –ome! We really need someone to looking into the *femome* and *manome*.

An exploration of things that are missing in the human genome. The nullomers.

Julia Herold, Stefan Kurtz and Robert Giegerich. Efficient computation of absent words in genomic sequences. *BMC Bioinformatics* (2008) **9**:167

We've already seen how data can be grouped into classes in our series on classifiers. In this column, we look at how data can be grouped by similarity in an unsupervised way.

We look at two common clustering approaches: `k`-means and hierarchical clustering. All clustering methods share the same approach: they first calculate similarity and then use it to group objects into clusters. The details of the methods, and outputs, vary widely.

Altman, N. & Krzywinski, M. (2017) Points of Significance: Clustering. *Nature Methods* **14**:545–546.

Lever, J., Krzywinski, M. & Altman, N. (2016) Points of Significance: Logistic regression. *Nature Methods* **13**:541-542.

Lever, J., Krzywinski, M. & Altman, N. (2016) Points of Significance: Classifier evaluation. *Nature Methods* **13**:603-604.