Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - contact me Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca on Twitter Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - Lumondo Photography Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - Pi Art Martin Krzywinski / Genome Sciences Center / mkweb.bcgsc.ca - Hilbertonians - Creatures on the Hilbert Curve
Feel the vibe, feel the terror, feel the painHooverphonicMad about you, orchestrally.more quotes

DNA on 10th — street art, wayfinding and font


visualization + design

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
The 2019 Pi Day art celebrates digits of `\pi` with hundreds of languages and alphabets. If you're a kid at heart—rejoice—there's a special edition for you!

`\pi` Approximation Day Art Posters


Pi Day 2014 Art Poster - Folding the Number Pi
 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
2019 `\pi` has hundreds of digits, hundreds of languages and a special kids' edition.

Pi Day 2014 Art Poster - Folding the Number Pi
 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
2018 `\pi` day

Pi Day 2014 Art Poster - Folding the Number Pi
 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
2017 `\pi` day

Pi Day 2014 Art Poster - Folding the Number Pi
 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
2016 `\pi` approximation day

Pi Day 2014 Art Poster - Folding the Number Pi
 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
2016 `\pi` day

Pi Day 2014 Art Poster - Folding the Number Pi
 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
2015 `\pi` day

Pi Day 2014 Art Poster - Folding the Number Pi
 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
2014 `\pi` approx day

Pi Day 2014 Art Poster - Folding the Number Pi
 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
2014 `\pi` day

Pi Day 2014 Art Poster - Folding the Number Pi
 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
2013 `\pi` day

Pi Day 2014 Art Poster - Folding the Number Pi
 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Circular `\pi` art

The never-repeating digits of `\pi` can be approximated by 22/7 = 3.142857 to within 0.04%. These pages artistically and mathematically explore rational approximations to `\pi`. This 22/7 ratio is celebrated each year on July 22nd. If you like hand waving or back-of-envelope mathematics, this day is for you: `\pi` approximation day!

Want more math + art? Discover the Accidental Similarity Number. Find humor in my poster of the first 2,000 4s of `\pi`.
Vague mathematics and alternative explanations to reality ahead.
Equip your imagination.

What would circles look like if `\pi`=22/7?

Tiny loop, Folded dimensions and solidland

Imagine that the circle had a tiny loop at one of its points. The circumference of this loop would be added to the circumference of the circle, but the loop would be so small that we would never notice it.

Pi Approximation Day Art Poster / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
In a universe where Pi=22/7, circles might have a single point at which another dimension is curled up, contributing to the additional component of circumference.

This is reminiscent of how string theories describe higher dimensions—as tiny loops at each point in space, except in my example the loop is only at one point.

Pi Approximation Day Art Poster / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
A 3rd dimension explained on a 2d plane. The 3rd dimension is represented by a circle of a very small radius.

This idea originated with Klein, who explained the fourth dimension as a curled up circle of a very small radius. Another way in which this curling-up is used is to say that the fifth dimension is a curled up Planck length, as explained in this Imagining 10 Dimensions video.

flatlanders and solidlanders

If this idea is difficult to wrap your head around, you're not alone. We cannot think of additional dimensions in the regular spatial sence since we have no means of experiencing such phenomena. We can however imagine how flatlanders might explain the 3rd dimension, since we can perceive it. They would draw the curled up circles in their plane because they would not have the experience of drawing with perspective mimicking our 3rd dimension.

Pi Approximation Day Art Poster / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
How creatures that live in a 2-dimensional world, so-called flatlanders, might explain the 3rd dimension (left) and how we ourselves might visualize their explanation (right).

We would draw their explanation as shown on the right in the figure above, borrowing from our concept of the 3rd spatial dimension. Now imagine showing our explanation to a flatlander. They would not see the same thing as you—the circles would not intuitively imply the higher dimension to them.

This is analogous to why we cannot draw folded up dimensions. We are merely solidlanders—flatlanders in 3d space. Creatures that can perceive more spatial dimensions would use us as examples of diminished perceptual ability.

Did you notice the fallacy in the term solidlander? We refer to solids as objects that occupy the maximum number of spatial dimensions. There's no reason to think that creatures that perceive more dimensions wouldn't use this word the same way we do. We're solidlanders from our perspective and they're solidlanders from theirs.

relativistic speeds, frames of reference and length contraction

Another way to imagine how a circle might look is a little more realistic. The theory of special relativity tells us that when we travel at speed relative to another object the dimensions of that object appear contracted to us in the direction of motion.

This contraction is always present, but essentially imperceptible unless we're travelling fast enough. For example, in order for a 1 meter object to appear contracted by the length of a hydrogen molecule (0.3 nm) we would have to be travelling at 7.3 km/s (Wolfram Alpha calculation)!

Pi Approximation Day Art Poster / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
If we travel at a speed of 0.04c and use the radius length along our direction of motion, the circumference of the circle will appear to be `2 \times 22/7 \times r`.

How fast would we have to be going to compress the circle sufficiently so that its circumference and radius ratio embody the `22/7` approximation of `\pi`? Pretty fast, it turns out. If we travel at just over 12,000 km/sec (0.04 times the speed of light, Wolfram Alpha calculation), the circle will compress as shown in the figure above, and the ratio of its circumference to the radius along direction of motion will make `\pi` appear to be `22/7`.

This compression in length would be barely perceptible to us. Below are both circles, shown overlapping, with `delta` being the extra length in radius required.

Pi Approximation Day Art Poster / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Deformation of the circle required to change the ratio of its circumference to original radius from \pi to 22/7.

The value of `\delta`, which is 0.0008049179155 (if `r = 1`), can be calculated by considering the perimeter of an ellipse. The fact that `\delta` is small shouldn't be surprising since `22/7` is an excellent approximation of `\pi`, good to 0.04%.

Calculating the parameter of an ellipse is more complicated than calculating it for a circle because it uses something called an elliptic integral. This integral has no analytical solution and requires numerical approximation. Luckily, we have computers.

Pi Approximation Day Art Poster / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
If a circle compressed slightly in one direction (e.g. vertically) then we can make the ratio of its circumference to the new radius be 2 × 22/7.

We can use the expression shown above for the perimeter of the ellipse to determine how much the circle needs to be deformed. Let's write `a = r + \delta` (original radius with slight deformation `\delta`) and `b=r`. Since `22/7 > \pi` we know that `\delta > 0`.

It remains to solve the equation below for a value of `\delta` that will yield a ratio of circumference to `r` of `2 \times 22/7`.

Pi Approximation Day Art Poster / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
The equation we need to solve to determine how much of a stretch the circle needs.

To make things simpler, let set `r=1`. Solving the equation numerically, I find $$\delta = 0.0008049179155$$

You can verify this solution at Wolfram Alpha.

the meaning of full-circle

After all this, we come full-circle to the meaning of full-circle.

You might ask why I didn't change the definition of `\pi` to `22/7` in the upper limit of the integral. After all, why not make the approximation exercise more faithful to the approximation?

It turns out that if I did that I would get `\delta=0`, which brings us back to the original circle. How is this possible?

Technically, this is because the integral returns the upper limit as its answer if the eccentricity is zero (i.e., `E(x,0)=x`).

Intuitively, this is because changing the upper limit of the integral actually redefines the angle of a full revolution. Now, full-circle isn't `2 \pi` radians, but `2 \times 22/7`. Given that the ratio of the circumference of a circle to its radius is exactly the size, in radians, of a full revolution, we don't need to change the shape of the circle if we're willing to change what a full revolution means.

VIEW ALL

news + thoughts

Markov Chains

Tue 30-07-2019

You can look back there to explain things,
but the explanation disappears.
You'll never find it there.
Things are not explained by the past.
They're explained by what happens now.
—Alan Watts

A Markov chain is a probabilistic model that is used to model how a system changes over time as a series of transitions between states. Each transition is assigned a probability that defines the chance of the system changing from one state to another.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Nature Methods Points of Significance column: Markov Chains. (read)

Together with the states, these transitions probabilities define a stochastic model with the Markov property: transition probabilities only depend on the current state—the future is independent of the past if the present is known.

Once the transition probabilities are defined in matrix form, it is easy to predict the distribution of future states of the system. We cover concepts of aperiodicity, irreducibility, limiting and stationary distributions and absorption.

This column is the first part of a series and pairs particularly well with Alan Watts and Blond:ish.

Grewal, J., Krzywinski, M. & Altman, N. (2019) Points of significance: Markov Chains. Nature Methods 16:663–664.

1-bit zoomable gigapixel maps of Moon, Solar System and Sky

Mon 22-07-2019

Places to go and nobody to see.

Exquisitely detailed maps of places on the Moon, comets and asteroids in the Solar System and stars, deep-sky objects and exoplanets in the northern and southern sky. All maps are zoomable.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
3.6 gigapixel map of the near side of the Moon, annotated with 6,733. (details)
Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
100 megapixel and 10 gigapixel map of the Solar System on 20 July 2019, annotated with 758k asteroids, 1.3k comets and all planets and satellites. (details)
Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
100 megapixle and 10 gigapixel map of the Northern Celestial Hemisphere, annotated with 44 million stars, 74,000 deep-sky objects and 3,000 exoplanets. (details)
Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
100 megapixle and 10 gigapixel map of the Southern Celestial Hemisphere, annotated with 69 million stars, 88,000 deep-sky objects and 1000 exoplanets. (details)

Quantile regression

Sat 01-06-2019
Quantile regression robustly estimates the typical and extreme values of a response.

Quantile regression explores the effect of one or more predictors on quantiles of the response. It can answer questions such as "What is the weight of 90% of individuals of a given height?"

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Nature Methods Points of Significance column: Quantile regression. (read)

Unlike in traditional mean regression methods, no assumptions about the distribution of the response are required, which makes it practical, robust and amenable to skewed distributions.

Quantile regression is also very useful when extremes are interesting or when the response variance varies with the predictors.

Das, K., Krzywinski, M. & Altman, N. (2019) Points of significance: Quantile regression. Nature Methods 16:451–452.

Background reading

Altman, N. & Krzywinski, M. (2015) Points of significance: Simple linear regression. Nature Methods 12:999–1000.

Analyzing outliers: Robust methods to the rescue

Sat 30-03-2019
Robust regression generates more reliable estimates by detecting and downweighting outliers.

Outliers can degrade the fit of linear regression models when the estimation is performed using the ordinary least squares. The impact of outliers can be mitigated with methods that provide robust inference and greater reliability in the presence of anomalous values.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Nature Methods Points of Significance column: Analyzing outliers: Robust methods to the rescue. (read)

We discuss MM-estimation and show how it can be used to keep your fitting sane and reliable.

Greco, L., Luta, G., Krzywinski, M. & Altman, N. (2019) Points of significance: Analyzing outliers: Robust methods to the rescue. Nature Methods 16:275–276.

Background reading

Altman, N. & Krzywinski, M. (2016) Points of significance: Analyzing outliers: Influential or nuisance. Nature Methods 13:281–282.

Two-level factorial experiments

Fri 22-03-2019
To find which experimental factors have an effect, simultaneously examine the difference between the high and low levels of each.

Two-level factorial experiments, in which all combinations of multiple factor levels are used, efficiently estimate factor effects and detect interactions—desirable statistical qualities that can provide deep insight into a system.

They offer two benefits over the widely used one-factor-at-a-time (OFAT) experiments: efficiency and ability to detect interactions.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Nature Methods Points of Significance column: Two-level factorial experiments. (read)

Since the number of factor combinations can quickly increase, one approach is to model only some of the factorial effects using empirically-validated assumptions of effect sparsity and effect hierarchy. Effect sparsity tells us that in factorial experiments most of the factorial terms are likely to be unimportant. Effect hierarchy tells us that low-order terms (e.g. main effects) tend to be larger than higher-order terms (e.g. two-factor or three-factor interactions).

Smucker, B., Krzywinski, M. & Altman, N. (2019) Points of significance: Two-level factorial experiments Nature Methods 16:211–212.

Background reading

Krzywinski, M. & Altman, N. (2014) Points of significance: Designing comparative experiments.. Nature Methods 11:597–598.

Happy 2019 `\pi` Day—
Digits, internationally

Tue 12-03-2019

Celebrate `\pi` Day (March 14th) and set out on an exploration explore accents unknown (to you)!

This year is purely typographical, with something for everyone. Hundreds of digits and hundreds of languages.

A special kids' edition merges math with color and fat fonts.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
116 digits in 64 languages. (details)
Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
223 digits in 102 languages. (details)

Check out art from previous years: 2013 `\pi` Day and 2014 `\pi` Day, 2015 `\pi` Day, 2016 `\pi` Day, 2017 `\pi` Day and 2018 `\pi` Day.