latest newsbuy art
Love itself became the object of her love.Jonathan Safran Foercount sadnessesmore quotes
very clickable
visualization + math

The 2022 π Day art is a music album composed by Greg Coles for solo piano. It tells stories from the very beginning (314…) to the very (known) end of π (…264) as well as math (Wallis Product) and math jokes (Feynman Point), repetition (nn) and zeroes (null).

`\pi` Approximation Day Art Posters


Pi Day 2014 Art Poster - Folding the Number Pi
 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
2021 `\pi` reminds us that good things grow for those who wait.' edition.

Pi Day 2014 Art Poster - Folding the Number Pi
 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
2019 `\pi` has hundreds of digits, hundreds of languages and a special kids' edition.

Pi Day 2014 Art Poster - Folding the Number Pi
 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
2018 `\pi` day stitches street maps into new destinations.

Pi Day 2014 Art Poster - Folding the Number Pi
 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
2017 `\pi` day imagines the sky in a new way.


Pi Day 2014 Art Poster - Folding the Number Pi
 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
2016 `\pi` approximation day wonders what would happen if about right was right.

Pi Day 2014 Art Poster - Folding the Number Pi
 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
2016 `\pi` day sees digits really fall for each other.

Pi Day 2014 Art Poster - Folding the Number Pi
 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
2015 `\pi` day maps transcendentally.

Pi Day 2014 Art Poster - Folding the Number Pi
 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
2014 `\pi` approx day spirals into roughness.


Pi Day 2014 Art Poster - Folding the Number Pi
 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
2014 `\pi` day hypnotizes you into looking.

Pi Day 2014 Art Poster - Folding the Number Pi
 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
2014 `\pi` day

Pi Day 2014 Art Poster - Folding the Number Pi
 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
2013 `\pi` day is where it started

Pi Day 2014 Art Poster - Folding the Number Pi
 / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Circular `\pi` art and other distractions

The never-repeating digits of `\pi` can be approximated by 22/7 = 3.142857 to within 0.04%. These pages artistically and mathematically explore rational approximations to `\pi`. This 22/7 ratio is celebrated each year on July 22nd. If you like hand waving or back-of-envelope mathematics, this day is for you: `\pi` approximation day!

Want more math + art? Discover the Accidental Similarity Number. Find humor in my poster of the first 2,000 4s of `\pi`.
Vague mathematics and alternative explanations to reality ahead.
Equip your imagination.

What would circles look like if `\pi`=22/7?

Tiny loop, Folded dimensions and solidland

Imagine that the circle had a tiny loop at one of its points. The circumference of this loop would be added to the circumference of the circle, but the loop would be so small that we would never notice it.

Pi Approximation Day Art Poster / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
In a universe where Pi=22/7, circles might have a single point at which another dimension is curled up, contributing to the additional component of circumference.

This is reminiscent of how string theories describe higher dimensions—as tiny loops at each point in space, except in my example the loop is only at one point.

Pi Approximation Day Art Poster / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
A 3rd dimension explained on a 2d plane. The 3rd dimension is represented by a circle of a very small radius.

This idea originated with Klein, who explained the fourth dimension as a curled up circle of a very small radius. Another way in which this curling-up is used is to say that the fifth dimension is a curled up Planck length, as explained in this Imagining 10 Dimensions video.

flatlanders and solidlanders

If this idea is difficult to wrap your head around, you're not alone. We cannot think of additional dimensions in the regular spatial sence since we have no means of experiencing such phenomena. We can however imagine how flatlanders might explain the 3rd dimension, since we can perceive it. They would draw the curled up circles in their plane because they would not have the experience of drawing with perspective mimicking our 3rd dimension.

Pi Approximation Day Art Poster / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
How creatures that live in a 2-dimensional world, so-called flatlanders, might explain the 3rd dimension (left) and how we ourselves might visualize their explanation (right).

We would draw their explanation as shown on the right in the figure above, borrowing from our concept of the 3rd spatial dimension. Now imagine showing our explanation to a flatlander. They would not see the same thing as you—the circles would not intuitively imply the higher dimension to them.

This is analogous to why we cannot draw folded up dimensions. We are merely solidlanders—flatlanders in 3d space. Creatures that can perceive more spatial dimensions would use us as examples of diminished perceptual ability.

Did you notice the fallacy in the term solidlander? We refer to solids as objects that occupy the maximum number of spatial dimensions. There's no reason to think that creatures that perceive more dimensions wouldn't use this word the same way we do. We're solidlanders from our perspective and they're solidlanders from theirs.

relativistic speeds, frames of reference and length contraction

Another way to imagine how a circle might look is a little more realistic. The theory of special relativity tells us that when we travel at speed relative to another object the dimensions of that object appear contracted to us in the direction of motion.

This contraction is always present, but essentially imperceptible unless we're travelling fast enough. For example, in order for a 1 meter object to appear contracted by the length of a hydrogen molecule (0.3 nm) we would have to be travelling at 7.3 km/s (Wolfram Alpha calculation)!

Pi Approximation Day Art Poster / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
If we travel at a speed of 0.04c and use the radius length along our direction of motion, the circumference of the circle will appear to be `2 \times 22/7 \times r`.

How fast would we have to be going to compress the circle sufficiently so that its circumference and radius ratio embody the `22/7` approximation of `\pi`? Pretty fast, it turns out. If we travel at just over 12,000 km/sec (0.04 times the speed of light, Wolfram Alpha calculation), the circle will compress as shown in the figure above, and the ratio of its circumference to the radius along direction of motion will make `\pi` appear to be `22/7`.

This compression in length would be barely perceptible to us. Below are both circles, shown overlapping, with `delta` being the extra length in radius required.

Pi Approximation Day Art Poster / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Deformation of the circle required to change the ratio of its circumference to original radius from \pi to 22/7.

The value of `\delta`, which is 0.0008049179155 (if `r = 1`), can be calculated by considering the perimeter of an ellipse. The fact that `\delta` is small shouldn't be surprising since `22/7` is an excellent approximation of `\pi`, good to 0.04%.

Calculating the parameter of an ellipse is more complicated than calculating it for a circle because it uses something called an elliptic integral. This integral has no analytical solution and requires numerical approximation. Luckily, we have computers.

Pi Approximation Day Art Poster / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
If a circle compressed slightly in one direction (e.g. vertically) then we can make the ratio of its circumference to the new radius be 2 × 22/7.

We can use the expression shown above for the perimeter of the ellipse to determine how much the circle needs to be deformed. Let's write `a = r + \delta` (original radius with slight deformation `\delta`) and `b=r`. Since `22/7 > \pi` we know that `\delta > 0`.

It remains to solve the equation below for a value of `\delta` that will yield a ratio of circumference to `r` of `2 \times 22/7`.

Pi Approximation Day Art Poster / Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
The equation we need to solve to determine how much of a stretch the circle needs.

To make things simpler, let set `r=1`. Solving the equation numerically, I find $$\delta = 0.0008049179155$$

You can verify this solution at Wolfram Alpha.

the meaning of full-circle

After all this, we come full-circle to the meaning of full-circle.

You might ask why I didn't change the definition of `\pi` to `22/7` in the upper limit of the integral. After all, why not make the approximation exercise more faithful to the approximation?

It turns out that if I did that I would get `\delta=0`, which brings us back to the original circle. How is this possible?

Technically, this is because the integral returns the upper limit as its answer if the eccentricity is zero (i.e., `E(x,0)=x`).

Intuitively, this is because changing the upper limit of the integral actually redefines the angle of a full revolution. Now, full-circle isn't `2 \pi` radians, but `2 \times 22/7`. Given that the ratio of the circumference of a circle to its radius is exactly the size, in radians, of a full revolution, we don't need to change the shape of the circle if we're willing to change what a full revolution means.

news + thoughts

Regression modeling of time-to-event data with censoring

Mon 21-11-2022

If you sit on the sofa for your entire life, you’re running a higher risk of getting heart disease and cancer. —Alex Honnold, American rock climber

In a follow-up to our Survival analysis — time-to-event data and censoring article, we look at how regression can be used to account for additional risk factors in survival analysis.

We explore accelerated failure time regression (AFTR) and the Cox Proportional Hazards model (Cox PH).

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Nature Methods Points of Significance column: Regression modeling of time-to-event data with censoring. (read)

Dey, T., Lipsitz, S.R., Cooper, Z., Trinh, Q., Krzywinski, M & Altman, N. (2022) Points of significance: Regression modeling of time-to-event data with censoring. Nature Methods 19.

Music video for Max Cooper's Ascent

Tue 25-10-2022

My 5-dimensional animation sets the visual stage for Max Cooper's Ascent from the album Unspoken Words. I have previously collaborated with Max on telling a story about infinity for his Yearning for the Infinite album.

I provide a walkthrough the video, describe the animation system I created to generate the frames, and show you all the keyframes

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Frame 4897 from the music video of Max Cooper's Asent.

The video recently premiered on YouTube.

Renders of the full scene are available as NFTs.

Gene Cultures exhibit — art at the MIT Museum

Tue 25-10-2022

I am more than my genome and my genome is more than me.

The MIT Museum reopened at its new location on 2nd October 2022. The new Gene Cultures exhibit featured my visualization of the human genome, which walks through the size and organization of the genome and some of the important structures.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
My art at the MIT Museum Gene Cultures exhibit tells shows the scale and structure of the human genome. Pay no attention to the pink chicken.

Annals of Oncology cover

Wed 14-09-2022

My cover design on the 1 September 2022 Annals of Oncology issue shows 570 individual cases of difficult-to-treat cancers. Each case shows the number and type of actionable genomic alterations that were detected and the length of therapies that resulted from the analysis.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
An organic arrangement of 570 individual cases of difficult-to-treat cancers showing genomic changes and therapies. Apperas on Annals of Oncology cover (volume 33, issue 9, 1 September 2022).

Pleasance E et al. Whole-genome and transcriptome analysis enhances precision cancer treatment options (2022) Annals of Oncology 33:939–949.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
My Annals of Oncology 570 cancer cohort cover (volume 33, issue 9, 1 September 2022). (more)

Browse my gallery of cover designs.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
A catalogue of my journal and magazine cover designs. (more)

Survival analysis—time-to-event data and censoring

Fri 05-08-2022

Love's the only engine of survival. —L. Cohen

We begin a series on survival analysis in the context of its two key complications: skew (which calls for the use of probability distributions, such as the Weibull, that can accomodate skew) and censoring (required because we almost always fail to observe the event in question for all subjects).

We discuss right, left and interval censoring and how mishandling censoring can lead to bias and loss of sensitivity in tests that probe for differences in survival times.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Nature Methods Points of Significance column: Survival analysis—time-to-event data and censoring. (read)

Dey, T., Lipsitz, S.R., Cooper, Z., Trinh, Q., Krzywinski, M & Altman, N. (2022) Points of significance: Survival analysis—time-to-event data and censoring. Nature Methods 19:906–908.

3,117,275,501 Bases, 0 Gaps

Sun 21-08-2022

See How Scientists Put Together the Complete Human Genome.

My graphic in Scientific American's Graphic Science section in the August 2022 issue shows the full history of the human genome assembly — from its humble shotgun beginnings to the gapless telomere-to-telomere assembly.

Read about the process and methods behind the creation of the graphic.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
3,117,275,501 Bases, 0 Gaps. Text by Clara Moskowitz (Senior Editor), art direction by Jen Christiansen (Senior Graphics Editor), source: UCSC Genome Browser.

See all my Scientific American Graphic Science visualizations.


© 1999–2022 Martin Krzywinski | contact | Canada's Michael Smith Genome Sciences CentreBC Cancer Research CenterBC CancerPHSA