4.1.2.2.2

Random Numbers and Distributions

 Session 2probability distributions

last time

- computers cannot generate real random numbers, only pseudo-random numbers
- PRNs are drawn from a deterministic sequence, with possibly a very large period
- Marsenne Twister has a period of $\sim 220,000$
- linear congruential generators (LCG) are a very common method of generating PRNs
- modified LCGs are at the heart of many PRNGs like ANSI C rand(), drand48() and others

$$
r_{i+1}=\left(a r_{i}+c\right) \bmod m
$$

- LCG values do not fill space evenly
- choose a,c,m carefully
- do not choose a,c,m yourself
- random.mat.sbg.ac.at/~charly/server/node3.html

- LCG sequences can fail randomness tests well before the end of their period
- Park-Miller minimal standard fails chi-squared after 10^{7} numbers (<1\% of its period)

probability distributions

- the statistical outcome of random processes can frequently be described by using a probability distribution
- if the observed outcomes are $X_{1}, X_{2}, X_{3}, \ldots$, then the probability distribution gives the chance of observing any one of the outcomes.

$$
\begin{aligned}
& P\left(x_{1}\right), P\left(x_{2}\right), P\left(x_{3}\right), \ldots \\
& P\left(x_{i}\right) \geq 0 \quad \sum P\left(x_{i}\right)=1
\end{aligned}
$$

- for a fair coin, there are two outcomes, heads (H) or tails (T)

$$
P(H)=P(T)=\frac{1}{2}
$$

- these are examples of a finite random variable - number of outcomes are finite

graphing probability distributions

- probability distributions are drawn as column graphs when the number of outcomes is small
single toss of a fair coin

two tosses of a fair coin

expectation value

the average or expectation value of a random variable is given in terms of the probability distribution

$$
E(X)=\sum x_{i} P\left(x_{i}\right)
$$

$E(x)$ is a weighted average, with the weights of each outcome being the probability of that outcome

- for two tosses of a coin, the average number of heads in two tosses is

probability of observing nh heads

expectation value

- if the random variable is uniformly distributed, then $P(x)$ is constant
- if there are n outcomes, the requirement $\sum P\left(x_{i}\right)=1$ implies $P\left(x_{i}\right)=\frac{1}{n}$
- the expectation value reduces to the familiar form of the average

$$
E(X)=\sum x_{i} P\left(x_{i}\right)=\frac{\sum x_{i}}{n}
$$

- commonly μ is used to indicate the expectation value

variance

- the variance gives a sense of the dispersion of the random values away from the expectation value
- the variance is given by

$$
\operatorname{var}(X)=\sum\left(x_{i}-E(X)\right)^{2} P\left(x_{i}\right)
$$

- this looks just like an expectation value - and it is, but not of the variable but of a transform of the variable - the square of the distance from the average

$$
\operatorname{var}(X)=E\left[(X-\mu)^{2}\right]
$$

- the standard deviation, σ, is related to the variance

$$
\sigma^{2}=\operatorname{var}(X)
$$

standardized random variable

- the overall shape of the probability distribution function is of most importance - for different values of the mean, the distribution will be "centered" at a different value - for different values of the variance, the distribution will be "stretched" differently - mean and variance are parameters, not fundamental descriptors of the distribution
- standardized random variable is a transformation

$$
Z=\frac{X-E(X)}{\sqrt{\operatorname{var}(X)}}=\frac{X-\mu}{\sigma}
$$

- Z is used to describe the underlying nature of a process (e.g. cars arriving at a traffic light), whereas X describes a particular instance (e.g. cars arriving at a traffic light in rush hour)

$$
E(Z)=0 \quad \operatorname{var}(Z)=1
$$

chebyshev's inequality

- the variance measures the spread of values about the mean
- the smaller the variance, the more tightly values are grouped around the mean
- Chebyshev's inequality puts a lower bound on the probability of finding a random variable within a multiple of the standard deviation
- recall that for a normal distribution, a value will land within $\sigma 68 \%$ of the time ($2 \sigma 95 \%$)

$$
P(\mu-k \sigma \leq x \leq \mu+k \sigma) \geq 1-\frac{1}{k^{2}}
$$

- for any random variable,
- probability of falling within 2σ is at least 75%
- ... within 3σ is at least 89%
- ... within 4σ is at least 94%

cumulative probability distribution

- the probability distribution $\mathrm{P}(\mathrm{x})$ gives you the chance of observing an event, x
- the cumulative distribution $F(x)$ gives you the chance of observing any event $\leq x$

$$
F\left(x_{i}\right)=\sum_{x_{j} \leq x_{i}} P\left(x_{j}\right)
$$

probability of observing exactly nh heads

probability of observing nh or fewer heads

number of heads, nh, in 2 tosses

generating numbers from arbitrary distributions

let's use the coin example to generate random numbers from a non-uniform distribution

- the distribution will correspond to the number of heads in two tosses of a coin
- generate o 25% of the time
- generate 150% of the time
- generate 225% of the time
- we can use the cumulative distribution and a uniform random number generator - each URD will be mapped onto an outcome that is distributed according to our probability distribution

using cumulative distribution to generate random values

using cumulative distribution to generate random values

```
# generate a uniform random deviate
my $urd = rand();
# define the cumulative distribution function
# c(0) = 0.25, c(1) = 0.75, c(2) = 1
my @c = (0.25,0,75,1);
# find the smallest i for which urd <= c(i)
for my $i (0..@c-1) {
    return $i if $urd <= $c[$i];
}
```


rejection method

continuous random variables

- not all random variables are finite
- toss of a coin or die is finite
- heights of individuals is not finite
- height can be any real number in a practical range, e.g. o-3 meters
- number of different heights in this range is infinite
- the probability and cumulative distribution functions are replaced by continuous equivalents
- sums are now integrals

$$
P(a \leq x \leq b)=\int_{a}^{b} p(x) d x \quad F(x)=P(x \leq b)=\int_{-\infty}^{b} p(x) d x
$$

uniform distribution

- the uniform distribution is the distribution from which PRNGs sample their values
$P(x)$

$$
P(a \leq x \leq b)=\int_{a}^{b} d x
$$

distributions

- bernoulli
geometric
- binomial
- normal
- poisson
exponential

bernoulli distribution

- an experiment in which there can be only two outcomes is a Bernoulli trial - typically labeled as success (value 1) or failure (value o)
- probability of success is p
- probability of failure is $1-p=q$
- $E(X)=p \operatorname{var}(X)=p(1-p)$
- to generate a Bernoulli variable, compare an URD to the success probability - return 1 if URD is smaller than success
- return o otherwise

```
my $brd1 = rand() < $p;
# or equivalently
my $brd2 = rand() > $q;
```


geometric distribution

given a Bernoulli trial with probability of success p, the geometric distribution describes the probability of obtaining a success (S) after exactly n failures (F)

- $\mathrm{n}=\mathrm{o}: \mathrm{S}$
- $\mathrm{n}=1$: FS
- $\mathrm{n}=2$: FFS
- $\mathrm{n}=3$: FFFS, etc
$P(X=n)=(1-p)^{n} p \quad E(X)=1 / p \quad P(X \leq n)=1-q^{n+1}$
- given a die, the probability or tossing a " 1 " is $1 / 6$
- the probability of having to toss the die 9 times before seeing a 1 (on the 10th toss) is

$$
\left(1-\frac{1}{6}\right)^{9} \frac{1}{6}=0.032
$$

generating geometric distribution

- transforming a uniform distribution to geometric distribution can be done via the cumulative form of the geometric distribution

generating geometric distribution

- I generated 10,000 values from the geometric distribution with $p=q=0.5$

```
# generate a uniform random deviate
my $urd = rand();
# walk along cumulative distribution until
# the URD is smaller
my $i = 0;
while( $urd > 1-$q**($i+1)) {
    $i++;
}
print $urd,$i;
```


binomial distribution

- the geometric distribution gives the probability of success after n failures, but...
- the binomial distribution gives the probability of k success after n trials in a Bernoulli process with success probability p

$$
\begin{aligned}
P(X=k)=\binom{n}{k} P^{k}(1-p)^{n-k} \\
\begin{array}{l}
\text { probability of } \\
\text { obtaining } n-k \text { failures } \\
\text { obtaining k successes } \\
\text { number of ways } k \text { successes can } \\
\text { appear in trials }
\end{array}
\end{aligned}
$$

binomial distribution

- consider $\mathrm{k}=2$ and $\mathrm{n}=3$ and $\mathrm{p}=0.5$
- seek the probability of 2 successes out of 3 trials
- there are three ways in which this can happen
- SSF
- SFS
- FSS
- the binomial coefficient for $C(3,2)=3$ multiples the probability $p^{k} q^{n-k}$ to correct for the fact that the outcome may manifest itself in more than one way
$E(X)=n p \quad \operatorname{var}(X)=n p q$
- consider a box of 12 lighbulbs - if the chance that any one bulb is broken is 0.01
- 89% of the time there will be no broken bulbs, $P(n=12, k=0, p=0.01)$
- 99.4% of the time there will be no more than one broken bulb, $P(12,0,0.01)+P(12,1,0.01)$
99.98% of the time there will be no more than two broken bulbs

normal distribution

- the binomial distribution approaches the normal distribution when
- n is very large
- p is fixed
- regime for $n p, n q>5$ and
plot at right shows normal and binomial distributions for $\mathrm{n}=6$ and $\mathrm{p}=0.5$

normal distribution

$$
\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)
$$

normal distribution

- the normal distribution is extremely common in physical and psychological sciences
- underlying causes of phenomena are unknown, but small effects are added into an observable score
- central limit theorem popularizes the normal distribution
- take a collection of random values from the same distribution which has a given mean and standard deviation
- compute the average of these values
- if you repeat this experiment, the average will be normally distributed

poisson distribution

- the binomial distribution is approximated by the poisson distribution when
- n is very large
- p is very small
- $\lambda=n p$

Poisson distribution describes the number of events in unit time, if the events occur at a fixed rate

$$
P(X=k)=\frac{e^{-\lambda} \lambda^{k}}{k!}
$$

- consider cars arriving at a traffic light at the rate of 1 per minute. In a 10 minute period, you expect 10 cars (this is the average and the value of λ above)
- what is the probability that you'll see only 5 cars in this time period (10 minutes)?

$$
P(X=5)=\frac{e^{-10} 10^{5}}{5!}=0.038
$$

poisson distribution

- if λ is taken to be a rate, per unit time, then Poisson gives the probability of a given number of occurrences before time t

$$
P\left(N_{t}=k\right)=\frac{e^{-\lambda t}(\lambda t)^{k}}{k!}
$$

\cdot in the example before, the rate was $\lambda=1$ car per minute and the probability to calculate was waiting $t=10$ minutes and seeing only 5 cars

- many other occurrences of Poisson exist
- number of dead squirrels per unit distance of highway
- number of spelling mistakes on a page
- number of hits to a web server per minute
- number of randomly selected points in a volume of space

exponential distribution

- this is a continuous version of the geometric distribution we've already seen - geometric distribution gave the probability of seeing a success after n failures of a Bernoulli trial
exponential distribution gives the probability of having to wait a given amount of time before an event happens
- before your next phone call
- before your next email arrives
- before your next car accident

$$
\begin{aligned}
& P(X=x)=\lambda e^{-\lambda x} \\
& P(X \leq x)=1-e^{-\lambda x}
\end{aligned}
$$

waiting for him/her to call

- suppose your boy/girl-friend calls you at a rate of once per 12 hour period ($\lambda=1 / 12$), what is the probability that you'll have to wait more than 24 hours before their call?
- the event (phone call) happens at a rate of $\lambda=1 / 12$
- Poisson would tell us how many calls we can expect in a given time
- e.g. probability of receiving 2 calls in 1 hour, 2 calls in 2 hours, 3 calls in 10 hours etc
- exponential distribution tells us how long we need to wait before the next event (inter-event time)

waiting for him/her to call

- the cumulative form of the exponential distribution gives us the probability that the waiting time is less than a certain value
- p = probability of waiting more than 24 hours
- $1-p=$ probability of waiting less than 24 hours

$$
P(X \leq x)=1-e^{-\lambda x}=1-e^{-\left(\frac{1}{12}\right)(24)}=1-e^{-2}=0.86
$$

- thus the probability of waiting more than 24 hours without a call is 0.14 .

-

Math::CDF

- this module gives both probability and cumulative distributions

- cumulative probability PXXXX
- quantile probability OXXXX

```
pbeta(), qbeta() [Beta Distribution]
pchisq(), qchisq() [Chi-square Distribution]
pf(), qf() [F Distribution]
pgamma(), qgamma() [Gamma Distribution]
pnorm(), qnorm() [Standard Normal Dist]
ppois(), qpois() [Poisson Distribution]
pt(), qt() [T-distribution]
pbinom() [Binomial Distribution]
pnbinom() [Negative Binomial Distribution]
```

```
# -1.96 - value at which probability is 0.025 that (X-\mu)/\sigma (X normally distributed) is smaller
qnorm(0.025)
```

口
日

Math::Random

- provides random values sampled from variety of distributions

```
random_beta
random_chi_square
random_exponential
random_f
random_gamma
random_multivariate_normal
random_multinomial
random_noncentral_chi_square
random_noncentral_f
random_normal
random_permutation
random_permuted_index
random_uniform
random_poisson
random_uniform_integer
random_negative_binomial
random_binomial
random_seed_from_phrase
random_get_seed
random_set_seed_from_phrase
random_set_seed
```

```
# generate 100 normally distributed random numbers
# with average 10 and stdev 0.5
random_normal(100, 10, 0.5)
```


4.1.2.2.2

Random Numbers and Distributions

Session 2

- lots of distributions exist
- search for "random" on CPAN

