
8/31/2005 2.1.2.4.1 - Random Numbers and Distributions 1

4.1.2.2 – Random Numbers and Distributions

4.1.2.2.1
Random Numbers and Distributions
Session 1

· randomness and pseudorandomness
· linear congruency generators
· how randomness is tested
· random number generators in Perl

8/31/2005 2.1.2.4.1 - Random Numbers and Distributions 2

4.1.2.2 – Random Numbers and Distributions

let’s calculate pi with random numbers

· ratio of the area to the inscribed circle to the area of the inscribed square is a
multiple of pi

· select N points at random within the square
· if you have no computer, drop rice into a square container
· π = 4 (points within circle) / N

2

2

4
4

S

C

C

S

A a

aA

A
A

π

π

=

=

=

a

a

Ac

As

8/31/2005 2.1.2.4.1 - Random Numbers and Distributions 3

4.1.2.2 – Random Numbers and Distributions

drop rice

· pick two uniformly distributed random numbers using rand()
· in range 0-1

· calculate distance from center of square bounded by (0,0)-(1,1)
· report whether point is inside circle

my $N = $ARGV[0];
for (0..$N-1) {

my ($x,$y) = (rand(),rand());
my $d = (0.5-$x)*(0.5-$x) + (0.5-$y)*(0.5-$y);
my $dt = int ($d < 0.25);
print $x,$y,$dt;

}

0.827984035480767 0.347324477508664 1
0.386150703765452 0.519155289512128 1
0.805041420273483 0.437904356978834 1
0.938070443924516 0.767489458434284 0
0.202308556064963 0.78770472900942 1
0.0836395183578134 0.00785069400444627 0

8/31/2005 2.1.2.4.1 - Random Numbers and Distributions 4

4.1.2.2 – Random Numbers and Distributions

pi to 0.4% with 200,000 random numbers in 1 second

3.142723.13683.176pi (4*Ac/As)

0.04%0.2%1%error

78,5687,842794inside circle, Ac

100,00010,0001,000rice, As

8/31/2005 2.1.2.4.1 - Random Numbers and Distributions 5

4.1.2.2 – Random Numbers and Distributions

pi estimate as function of rice grains – 10 iterations

average 10 3.28
average 100 3.104
average 1000 3.1172
average 10000 3.14464
average 100000 3.13932
average 1000000 3.14172
average 10000000 3.1415532

error is inversely proportional to the square
root of the number of samples

to lower the error by factor 10, you need
100 as many points

to lower the error by a factor 100, you need
10,000 as many points

1
n

ε ∼

8/31/2005 2.1.2.4.1 - Random Numbers and Distributions 6

4.1.2.2 – Random Numbers and Distributions

what is randomness?

· a sequence of numbers is random if there is no correlation between values in the
sequence

· computers generally cannot produce random numbers, only pseudo-random
numbers
· pseudo-random numbers are generated by algorithms which, depending on

sophistication, produce numbers that are effectively random, if limitations of the
algorithm are understood

· randomness requirements vary with application
· cryptography – extremely rigorous

· true random numbers are created by harnessing an unpredictable physical
process, like radioactive decay
· kits that generate/monitor white noise (audio, thermal, electronic) are available
· http://www.fourmilab.ch/hotbits/

8/31/2005 2.1.2.4.1 - Random Numbers and Distributions 7

4.1.2.2 – Random Numbers and Distributions

why are random numbers useful

· stochastic (probabilistic) simulations
· your system is described by a probabilistic model

· coverage process
· Markov model

· your system is deterministic but you would like to model noise
· molecular dynamics

· your algorithm to solve the problem is stochastic
· genetic algorithm
· simulated annealing

· requirement for non-deterministic values
· random file names
· random passwords

8/31/2005 2.1.2.4.1 - Random Numbers and Distributions 8

4.1.2.2 – Random Numbers and Distributions

definitions

· stochastic – pertaining to chance, synonymous with random
· deterministic – not stochastic
· uniformly distributed – random values with constant probability over their range
· uniform random deviate (urd) – a random number from a uniform distribution,

usually in the range 0-1
· gaussian random deviate (grd) – a random number from a normal distribution,

usually mean=0 stdev=1
· white noise – no correlation between values, all frequencies present (hiss of radio)
· coloured noise – correlation between successive random numbers, certain

frequencies more distinct than others
· pink noise – hiss mixed with rumble
· brown noise – rumbling

8/31/2005 2.1.2.4.1 - Random Numbers and Distributions 9

4.1.2.2 – Random Numbers and Distributions

pseudorandom number generators (PRNGs)

· simple PRNGs work using linear congruential generators (LCG, Lehmer 1949)
· first number is a user-defined seed
· next number is a function of previous number using the following recursion

· a,c,m are diligently chosen
· only a few well-known combinations are to be used!
· 0 <= a < m, 0 <= c < m

· LCG(m,a,c,seed)

1 ()modi ir ar c m+ = +

PRNG lists and references
www.taygeta.com/rwalks/node1.html
linux.duke.edu/~mstenner/free-docs/gsl-ref-1.1/gsl-ref_17.html
random.mat.sbg.ac.at/results/karl/server/server.html
triumvir.org/rng
csep1.phy.ornl.gov/rn/node9.html

D.H. Lehmer. Mathematical methods in large-scale computing units. In Proc. 2nd Sympos. on Large-Scale Digital Calculating
Machinery, Cambridge, MA, 1949, pages 141-146, Cambridge, MA, 1951. Harvard University Press.

8/31/2005 2.1.2.4.1 - Random Numbers and Distributions 10

4.1.2.2 – Random Numbers and Distributions

example of LCG

· initial conditions a=57 c=1 m=256 r=10
· period is 256 (maximum possible)

1 ()modi ir ar c m+ = +

1 vsi ir r+

first 20 points coloured

8/31/2005 2.1.2.4.1 - Random Numbers and Distributions 11

4.1.2.2 – Random Numbers and Distributions

values from LCGs fall on hyperplanes

· LCG k-vectors fall on k-1 dimensional planes
· (x,y,z) triplets will fall onto 2D planes
· lattice structure is used to rate LCG constant (minimize distance between planes)
· there are at most m1/k such planes, but often far fewer if constants are poorly chosen

RANDU, IBM mainframe, a=65539 m=2^31

a=16807 m=2,147,483,647=2^31-1
Park, S.K. and K.W. Miller, 1988; Random Number Generators: Good Ones are Hard to Find,
Comm. of the ACM, V. 31. No. 10, pp 1192-1201

draw your own lattices at www.cs.pitt.edu/~kirk/cs1501/animations/Random.html

8/31/2005 2.1.2.4.1 - Random Numbers and Distributions 12

4.1.2.2 – Random Numbers and Distributions

properties of PRNGs

· PRNGs are deterministic – for a given seed you always get the same sequence
· LCGs have a period – numbers eventually repeat

· never use a PRNG for a significant portion of its period, switch seeds instead and sample
another sequence [read more about your LCG if you are sampling many numbers]

· LCGs may require warmup time
· don’t sample a sequence immediately

· LCGs may produce numbers with obvious correlations
· successive values in Park-Miller minimal standard (a=16807 m=2,147,483,647) can differ

only by multiple of a (16,807). Therefore small values tend to be followed by smaller than
average values

· Park-Miller fails chi-squared test after on the order of 10,000,000 values have been
sampled (less then 1/100th of the period of the LCG)

· subsequences of LCG output may have long-range correlations – beware

http://www.cs.berkeley.edu/~daw/rnd/index.html

8/31/2005 2.1.2.4.1 - Random Numbers and Distributions 13

4.1.2.2 – Random Numbers and Distributions

some common LCGs

· rand() in ANSI C
· LCG(231,1103515245,1234,1234)
· low bits are not very random (right-most digits)

· drand48() in ANSI C
· LCG(248,25214903917,11,0)

· Perl uses one of the following, depending on
what is available on your system
· drand48()
· random() [non-linear feedback shift register]
· rand()

http://www.foo.be/docs/tpj/issues/vol2_2/tpj0202-0008.html
http://www.foo.be/docs/tpj/issues/vol1_4/tpj0104-0002.html
http://homepage.mac.com/afj/lfsr.html
http://en.wikipedia.org/wiki/Linear_feedback_shift_register

8/31/2005 2.1.2.4.1 - Random Numbers and Distributions 14

4.1.2.2 – Random Numbers and Distributions

how is randomness tested

· entropy
· information content
· “resistance to compression”
· entropy should be as high as possible

· chi-squared test
· N random numbers selected from range s=1..k. ns is the

number of times s appears, ps is the probability that a
number is s (1/k) [should sample Nps>5 points]

· x is chi-square distributed with k-1 degrees of freedom

· Monte Carlo value of pi
· lag plots and k-dimensional plots

· spectral test computes distance between hyperplanes

2

1

k
s

s s

nx N
Np=

= −∑

Marsaglia DIEHARD Battery Of Tests on Randomness
http://stat.fsu.edu/pub/diehard/

http://world.std.com/~franl/crypto/random-numbers.html

8/31/2005 2.1.2.4.1 - Random Numbers and Distributions 15

4.1.2.2 – Random Numbers and Distributions

sub-random sequences

· plotting pairs of numbers LCG does not fill
space evenly
· depending on the LCG, there may be large holes

· our calculation of pi had an error of 1/sqrt(N)
· to sample a space more evenly, a grid is better

· but you need to know how finely to make the grid
when you start

· you cannot sample a grid until you reach
convergence – you are committed to sample the
entire grid

· a sub-random sequence (quasi-random) fills
space more evenly than LCG values
· points maximally avoid each other

Halton’s sequence
100, 200, 400, 800, 1000, 2000, 4000 points

8/31/2005 2.1.2.4.1 - Random Numbers and Distributions 16

4.1.2.2 – Random Numbers and Distributions

Halton’s sequence

· elements in the sequence are defined as follows
· pick a prime, b
· element Hj, is computed as follows

· express j in base b (e.g. if j=50 and b=3, 50 base 3 = 1212)
· reverse the digits and put a decimal in front (1212 becomes 0.2121)
· convert back to base 10 (0.2121 base 3 = 0.8642)

· to fill n-dimensional space, use a separate sequence for each dimension
· generally first n primes are used (my example uses 3 and 5)

Hj base 2
8
16
32
128

8/31/2005 2.1.2.4.1 - Random Numbers and Distributions 17

4.1.2.2 – Random Numbers and Distributions

calculating Halton’s sequence

· the Math::BaseCalc module makes convenient converting to/from bases

use Math::BaseCalc;

$\=“\n” ; $,=“ “;

my $bobj;
for my $b (3,5) {

$bobj->{$b} = Math::BaseCalc->new(digits=>[0..$b-1]);
}
for my $i (0..10000) {

my $halton;
for my $b (@bases) {

convert i to base b
my $n = $bobj->{$b}->to_base($i);
reverse digits
my $nr = join("", reverse split("",$n));
add radix to front
my $nrr = "0.$nr";
convert back to decimal and store in hash
$halton->{$b} = $bobj->{$b}->from_base($nrr);

}
print map {$halton->{$_}} @bases;

}

8/31/2005 2.1.2.4.1 - Random Numbers and Distributions 18

4.1.2.2 – Random Numbers and Distributions

Halton’s sequence fills space evenly

· I generated 10,000 random points over [0,1[2 using rand()
· I generated 10,000 random points over [0,1[2 Halton’s method (base 3 and 5)

rand() – red
Halton - black

10,000 rand() points 10,000 Halton’s sequence

8/31/2005 2.1.2.4.1 - Random Numbers and Distributions 19

4.1.2.2 – Random Numbers and Distributions

do we get better estimate of pi?

· Halton’s sequence fills space more
evenly, and therefore the pi estimate
approaches the value of pi faster

· I calculated pi with the same approach
as described using three point
generators
· (xi,yi) = (rand(), rand())
· (xi,yi) = (rand(), rand()), 10 iterations
· (xi,yi) = (Hi,3,Hi,5)

· estimate error using Halton’s sequence
drops like 1/n rather than 1/sqrt(n)

Halton (3,5)

10 iterations
of rand()

1
n

ε ∼1
n

ε ∼

rand()

8/31/2005 2.1.2.4.1 - Random Numbers and Distributions 20

4.1.2.2 – Random Numbers and Distributions

ways to use PRNs in your code

· shuffling of a list of items
· two idioms here – shuffle values or indexes

· assign a[i] a random element from array
· assign a[random index] = a[i]

· throttled shuffling
· you can shake the array – a little or a lot – and displace elements up to a certain distance

from their position
· increase k to get more shake

shuffle values
@a = sort { rand() <=> rand() } @a;
shuffle indexes
@a[sort { rand() <=> rand() } (0..@a-1)] = @a;

@a[sort { $a+k*rand() <=> $b+k*rand() } (0..@a-1)] = @a;

8/31/2005 2.1.2.4.1 - Random Numbers and Distributions 21

4.1.2.2 – Random Numbers and Distributions

random strings

· what’s their use?
· temporary file names
· passwords
· random genomic sequence

my @c = qw(a t g c);

create one index value at a time, fetch array value
print @c[rand(@c)] for (1..1024);
create all index values at once, fetch array via slice
print @c[map { rand(@c) } (1..10)];

my @v = qw(a e i o u);
three sets of vowels, one set of consonants
my @c = (@v,@v,"a".."z");
konutl ucoxou ruigwo
print @c[map { rand(@c) } (1..10)];

8/31/2005 2.1.2.4.1 - Random Numbers and Distributions 22

4.1.2.2 – Random Numbers and Distributions

random sequence with specific GC content

· very unPerly
· we can do better

my $gc = 0.4;

if(rand () < $gc) {
if(rand() < 0.5) {
print “g”;

} else {
print “c”;

}
} elsif {
if(rand() < 0.5) {
print “a”;

} else {
print “t”;

}
}

8/31/2005 2.1.2.4.1 - Random Numbers and Distributions 23

4.1.2.2 – Random Numbers and Distributions

random sequence with specific GC content

· do we really need to generate two random numbers?

my @g = qw(g c);
my @a = qw(a t);
my $gc = 0.4;

trinary a?b:c operator can be useful
print rand() < $gc ? $g[rand(@g)] : $a[rand(@g)];

my @g = qw(a t g c);
my $gc = 0.4;

print $g[2*(rand() < 0.4) + rand(@g/2)];

8/31/2005 2.1.2.4.1 - Random Numbers and Distributions 24

4.1.2.2 – Random Numbers and Distributions

random sequence with specific GC content

· generate one random number, r
· pick g if r < gc/2, otherwise
· pick c if r < gc, otherwise
· pick a if r < (1+gc)/2, otherwise
· pick t

· we are using a uniformly distributed random number to generate a number
samples from a different distribution

my @g = qw(g c a t);
my $gc = 0.4;

my $r = rand();
my @c = ($gc/2,$gc,(1+$gc)/2,1);
for $i (0..@c-1) {
next unless $r < $c[$i];
print $g[$i];
last;

}

8/31/2005 2.1.2.4.1 - Random Numbers and Distributions 25

4.1.2.2 – Random Numbers and Distributions

what if our genome isn’t finished?

· let base pair “n” appear 1% of the time

my @g = qw(g c a t n);
my $gc = 0.4;

my $r = rand();
my @c = ($gc/2,$gc,(1+$gc)/2,0.99,1);
for $i (0..@c-1) {
next unless $r < $c[$i];
print $g[$i];
last;

}

8/31/2005 2.1.2.4.1 - Random Numbers and Distributions 26

4.1.2.2 – Random Numbers and Distributions

seeding

· PRNGs are pseudo-random because they produce exactly the same sequence for a
given seed
· makes debugging easier, since you can re-create the same sequence over and over

· if the PRNG is good, the seed should not matter
· if you do not seed your sequence, Perl will run srand() to do so

· combination of time, process ID etc is used as a seed
· if you call srand(), call it only once

· if you want a sequence that is hard to predict, use an unguessable seed
· normally this is not cruicial, unless you’re doing crypto

· Netscape’s SSL implementation was compromised because their choice of seed
was very predictable (time of day + process ID + parent process ID)

srand (time ^ $$ ^ unpack "%L*", `ps axww | gzip`);

http://www.cs.berkeley.edu/~daw/papers/ddj-netscape.html

8/31/2005 2.1.2.4.1 - Random Numbers and Distributions 27

4.1.2.2 – Random Numbers and Distributions

/dev/random and /dev/urandom

· most UNIXes have /dev/random
· a special system “device” that spits out random bits
· kernel-based
· based on variety of system characteristics that are extremely difficult to predict

· environmental noise from device drivers

· /dev/random monitors entropy and blocks when entropy drops until entropy
levels increase to produce sufficiently “random” bits

· /dev/urandom does not block and will produce as many bits as required
· use /dev/random if you need crypto-strength bits

get some random chars (0-255)
open(R,"/dev/random");
while(1) {
read(R,$x,1); # read one byte at a time
print unpack("C",$x); # display as number

}

http://linux.about.com/library/cmd/blcmdl4_urandom.htm

8/31/2005 2.1.2.4.1 - Random Numbers and Distributions 28

4.1.2.2 – Random Numbers and Distributions

pseudo-randomness on CPAN

· as usual, there are modules offering PRNGs other than built-in rand()
· Math::Random

· based on C randlib
· uniform, normal, chi, exponential, poisson, gamma distributions and others

· Math::Random::MT
· Mersenne Twister generator
· period of 219937-1

· Math::TrulyRandom
· uses timing of interrupts
· circa 1996
· I could not get this to work

· Net::Random
· get random values from on-line sources (e.g. fourmilab.ch’s HotBits)

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/ARTICLES/earticles.html

8/31/2005 2.1.2.4.1 - Random Numbers and Distributions 29

4.1.2.2 – Random Numbers and Distributions

benchmarking

· 250,000 MT values per second
· 400,000 randlib values per second
· 1,750,000 rand() values per second

seed the Mersenne Twister
use Math::Random::MT;
use Time::HiRes qw(gettimeofday tv_interval);
my $mt = Math::Random::MT->new(time);
get time now
my $t0 = [gettimeofday];
generate 1 million values
$mt->rand() for (0..1e7);
compute numbers per second
print int($N/tv_interval($t)),"MT values per second";

8/31/2005 2.1.2.4.1 - Random Numbers and Distributions 30

4.1.2.2 – Random Numbers and Distributions

String::Random

use String::Random;

$foo = new String::Random;
3 random digits – pattern set by regex
$foo->randregex('\d\d\d');
3 printable characters – pattern set by
$foo->randpattern("..."); # Prints 3 random printable characters
$foo->randpattern("CCcc!ccn")

c Any lowercase character [a-z]
C Any uppercase character [A-Z]
n Any digit [0-9]
! A punctuation character [~`!@$%^&*()-_+={}[]|\:;"'.<>?/#,]
. Any of the above
s A "salt" character [A-Za-z0-9./]
b Any binary data

$foo = new String::Random;
$foo->{‘b'} = [qw(a t g c)];
$foo->randpattern(“bbbbbb")

aecd
print random_string("0101",

["a", "b", "c"],
["d", "e", "f"]);

8/31/2005 2.1.2.4.1 - Random Numbers and Distributions 31

4.1.2.2 – Random Numbers and Distributions

4.1.2.2.1
Random Numbers and Distributions
Session 1

· pseudo-randomness is not easy
· next time, we’ll see how to generate values from

known and arbitrary probability distributions

