
10/10/2003 Two Problems - Part II - Fetching, Munging and Output 1

Two Problems – Part II

Perl Panacea?

· The camel represents the desirable features of Perl
· O’Reilly colophon

· Why is the camel successful?
· adapted itself to desert environment

· low water needs (gets around with what’s around)
· elegant from a distance
· still comfortable

· not cute - until you get to know the camel

data oasis application oasis

……………………………
desert

10/10/2003 Two Problems - Part II - Fetching, Munging and Output 2

Two Problems – Part II

Perl as Explorer

Lots of camel mechanics in the desert, and we’re in a desert

~ mathematics
beautiful & elegant
rigorous, requires overhead
fast on smooth ground
slow in rough terrain
! killed by camel veterinarian

another leading language Perl

~ physics
gets you there
explores uninhabited terrain, cavalier
average speed on smooth ground
average speed in rough terrain
* horse veterinarian OK

Simplified
Exploration model

known

unknown

horde of
scientists

10/10/2003 Two Problems - Part II - Fetching, Munging and Output 3

Two Problems – Part II

Holy Triad of Analysis

! data we want is in a web table (Very Bad Thing™) * visualize the relationships for sanity * format data to STDOUT

1 2 3
0 0 RPCI31.80h3
0 1 MPMGy916.380h8
0 2 WIBRy933.259d6
...
0 45 WIBRy933.284b4
0 46 WIBRy933.219c12
0 47 MPMGy916.110d1
1 0 MPMGy916.369g12
1 1 MPMGy916.282g2
1 2 RPCI31.33m10
...
21 7 RPCI31.17n14
21 8 WIBRy933.106h8
21 9 RPCI31.17i17

· many types of analyses fall into this analysis triad
· fetch from: file, user, pipe, http, ftp
· munge: collate, sort, organize, count, enumerate
· output: text, image, HTML, XML

· each step is made pleasant and easy with Perl

fetch

munge

output

10/10/2003 Two Problems - Part II - Fetching, Munging and Output 4

Two Problems – Part II

Step 1 – Fetch – Perl Makes it Fun

· 1 BAC associated with many YACs

· want to extract the list of YACs associated with each BAC

· BACa -> YAC1,YAC2,YAC3,…,YACm
· BACb -> YAC2,YAC3,YAC5,…,YACn

· examine linking relationships

a BAC

some YACs

relationship between our data

10/10/2003 Two Problems - Part II - Fetching, Munging and Output 5

Two Problems – Part II

LWP::Simple

· It’s very easy to grab a remote web page.

· $html now contains the HTML content of the web page

use LWP::Simple;
my $url = “http://www.mdc-berlin.de/ratgenome/data/MDC-Map-15.html”;
my $html = get($url);

HTML><HEAD><TITLE>MDC-Rat-Data</TITLE></HEAD>
<BODY scroll=yes>
<H1>Physical Mapping Data, Nov/01/2002</H1>
<P>Download: <A href="http://flipper.molgen.mpg.de:10085/mdcRATdata/MDC-
RatDataSet.tsv">MDC-RatDataSet.tsv (TAB separated values,
including RH-vectors, 1.8 MB)</P>

<H3><U>Legend:</U></H3>
<TABLE border=0>
<TBODY>
<TR>
<TD>No </TD>
<TD>- consecutive number
</TD></TR>
<TR>

10/10/2003 Two Problems - Part II - Fetching, Munging and Output 6

Two Problems – Part II

Parsing HTML – HTML::TreeBuilder

· Never parse HTML with your own code, unless you have a good reason. Use existing parser
modules.

· $tree is an object which you can traverse

· you have to know what you’re looking for

use HTML::TreeBuilder;
my $tree = HTML::TreeBuilder->new_from_content($html);

10/10/2003 Two Problems - Part II - Fetching, Munging and Output 7

Two Problems – Part II

Examine HTML – Brittle!

<TABLE border=0>
<TBODY>
<TR>
<TD>No </TD>
<TD>- consecutive number
</TD></TR>
<TR>
<TD>Chr </TD>
<TD>- chromosome</TD></TR>
…
</TD></TR></TBODY></TABLE>
…
<TABLE rules=none border=1>
…
<TR bgColor=#eeeeee>
<TD> 748</TD>
<TD> 02</TD>
<TD> 1</TD>
<TD> RPCI31.64l18</TD>
<TD> </TD>
<TD> </TD>
<TD> MPMGy916.186d9, MPMGy916.34f11…

10/10/2003 Two Problems - Part II - Fetching, Munging and Output 8

Two Problems – Part II

Fetch Columns from Second Table

Columns 2, 3, 6 contain data we want. Extract data and save in memory.

fetch table
my ($table) = grep($_->attr("rules") eq "none", $tree->find_by_tag_name("table"));
get all rows from table
my @rows = $table->find_by_tag_name("tr");
for each row…
ROW:
foreach my $row (@rows) {

get all columns
my @cols = $row->find_by_tag_name("td");
some columns do not contain data we want
next unless @cols == 7;
get data from columns 2,3,6
my $contig = $cols[2]->as_text;
my $bacname = $cols[3]->as_textl
my $yacnames = $cols[6]->as_text;
split YAC names a,b,c,d -> (a b c d)
my @yacnames = split(/,/,$yacnames);
save data in a hash of lists
push (@{$bac_to_yacs{$bacname}}, @yacnames);

}

grep(?,@x)

10/10/2003 Two Problems - Part II - Fetching, Munging and Output 9

Two Problems – Part II

Hashes and Arrays

my $bacname = $cols[3]->as_text
my $yacnames = $cols[6]->as_text;
my @yacnames = split(/,/,$yacnames);

push (@{$bac_to_yacs{$bacname}}, @yacnames);

P0001A01 P0002B12 P0015G11 P0009A03
. . .

M2A2, M3A12,
W3G5, …

M5A2, M2A2,
W5B12, …

M11C2, M7G5,
M1F3, …

M11G12, M3I5,
W8K6, …

@yacnames = M13A12, W4D9, …

push()
$bac_to_yacs{P0002B12}

%bac_to_yacs

10/10/2003 Two Problems - Part II - Fetching, Munging and Output 10

Two Problems – Part II

Step 2 – Munge - Perl Makes It Easy

Store data in a way that allows you to easily find needed relationships – choose wisely

· BAC -> list all associated YACs
· @list = @{$bac_to_yac{$bacname}}

· BAC -> how many YACs?
· scalar (@list)

· how many total BACs?
· scalar (keys %bac_to_yac)

· how many total YACs?
· $num_yacs = scalar (map { @{$bac_to_yac{$_}} keys %bac_to_yac)

· this sum doesn’t take care of duplicates

· how many average YACs per BAC?
· use Math::VecStat qw(average);
· average (map { scalar (@{$bac_to_yac{$_}}) } keys %bac_to_yac);

10/10/2003 Two Problems - Part II - Fetching, Munging and Output 11

Two Problems – Part II

CPAN

· CPAN contains 5,000+ modules of all types – fun & serious
· Perl Data Language (PDL) for matrix manipulation (PDL)
· convert time to Swedish Chef speak (Acme::Time::Baby)

· Graph::Base to create directed and undirected graphs

· GraphViz to generate GIF/TXT/EPS/PNG/…s from graph

#!/usr/local/bin/perl
use Acme::Time::Baby language => "swedish chef";
print babytime "5:35";

Zee beeg hund is un zee sefen und zee little hund
is un zee six. Bork, bork, bork!

search.cpan.org

10/10/2003 Two Problems - Part II - Fetching, Munging and Output 12

Two Problems – Part II

Standardized Module Documentation

String::Random Math::VecStat

name
Grinder – grinds coffee

synopsis

use Grinder;

$g = Grinder->new();

$g->grind(“coarse”);

$g->empty();

description
Models a Rancillio burr coffee
grinder

history
9 October 2003 - docs

bugs
If found, remove from grinder

author
M Krzywinski

10/10/2003 Two Problems - Part II - Fetching, Munging and Output 13

Two Problems – Part II

GraphViz – Big Bang for Little Buck

BAC

YACs

10/10/2003 Two Problems - Part II - Fetching, Munging and Output 14

Two Problems – Part II

Creating Graphs with Graph:: and GraphViz

my $graph = Graph::Undirected->new();
my $graphviz = GraphViz->new(directed=>0);

for each BAC in the hash
foreach my $bac (keys %bac_to_yacs) {

get a list of all YACs for this BAC
my @yacs = @{$bac_to_yacs{$bac}};
add edge between bac & yac in Graph::Undirected object
map {$graph->add_edge($bac,$_) } @yacs;
for vizualization do the same for GraphViz object
map { $graphviz->add_edge($bac,$_) } @yacs; # map {} IDIOM
}

}

create PNG image of graph
open(GRAPH,">/home/martink/www/htdocs/tmp/bacyac.png");
print GRAPH $graphviz->as_png;
close(GRAPH);

map {} @x

10/10/2003 Two Problems - Part II - Fetching, Munging and Output 15

Two Problems – Part II

List Clones in Contigs

List connected components, or contigs, created by BAC-YAC links.

make a list of lists which contain connected vertices
my @groups = $graph->strongly_connected_components;
iterate through each vertex list
foreach my $group_idx (0..@groups-1) {

get the vertices for this list
my @vertices = @{$groups[$group_idx]};
for each vertex, report the group (contig) index,
vertex index and name
foreach my $vertex_idx (0..@vertices-1) {

printf("%d %d %s\n",
$group_idx,
$vertex_idx,
$vertices[$vertex_idx]);

}
}

contig is a
connected component

10/10/2003 Two Problems - Part II - Fetching, Munging and Output 16

Two Problems – Part II

Output - Create Output to STDOUT

It’s nice to create output to STDOUT, rather than a file, because you can pipe your script into other
processes.

foreach my $vertex_idx (0..@vertices-1) {
printf("%d %d %s\n",

$group_idx,
$vertex_idx,
$vertices[$vertex_idx]);

}

0 0 RPCI31.80h3
0 1 MPMGy916.380h8
0 2 WIBRy933.259d6
...
0 45 WIBRy933.284b4
0 46 WIBRy933.219c12
0 47 MPMGy916.110d1
1 0 MPMGy916.369g12
1 1 MPMGy916.282g2
1 2 RPCI31.33m10
...
21 7 RPCI31.17n14
21 8 WIBRy933.106h8
21 9 RPCI31.17i17

contig clone namecontig
clone index

· Perl is friendly – you can copy file handles
· STDOUT to file
· file to STDOUT

10/10/2003 Two Problems - Part II - Fetching, Munging and Output 17

Two Problems – Part II

Munge at Prompt

Don’t forget that the command prompt offers powerful tools to manipulate and extract data –
generate maximally detailed reports and parse later

0 0 RPCI31.80h3
0 1 MPMGy916.380h8
0 2 WIBRy933.259d6
...
0 45 WIBRy933.284b4
0 46 WIBRy933.219c12
0 47 MPMGy916.110d1
1 0 MPMGy916.369g12
1 1 MPMGy916.282g2
1 2 RPCI31.33m10
...
21 7 RPCI31.17n14
21 8 WIBRy933.106h8
21 9 RPCI31.17i17

· how many contigs?
· cut –d “ “ –f 1 data.txt | sort –u | wc

· how many clones?
· cut –d “ “ –f 3 data.txt | sort –u | wc

· how many clones in contig 10?
· grep –d “^10 “ data.txt | wc

· which contigs have < 20 clones?
· cut –d “ “ –f 1 data.txt | uniq –c | egrep “ 1?[0-9] “

clones contig
16 13
18 14
18 15
13 16

clones contig
11 18
8 19
9 20
10 21

10/10/2003 Two Problems - Part II - Fetching, Munging and Output 18

Two Problems – Part II

Perl
productive

creative

lingual

compact

open source

does not spit

