latest newsbuy art
Safe, fallen down this way, I want to be just what I am.Cocteau Twinssafe at lastmore quotes
very clickable
data visualization + science communication
Visit the Poster Hospital to see redesigns of real-world posters and learn practical design guidelines for scientific posters and layouts on a large canvas.
Visit the Graphical Abstract Hospital to see redesigns of real-world abstracts and learn practical design guidelines for graphical abstracts and small figures.
Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Essentials of Data Visualization. An 8-part video mini-series on how to think about drawing data. In collaboration with University of Sydney.

Essentials of Data Visualization — 8-part miniseries

Thinking about drawing data and communicating science

This video series focuses on relevant and practical concepts in scientific data visualization. My aim is to make you think more clearly about visual presentation and to make you a better communicator. Each video is about 15 minutes long and comes with a slide deck of the images used in the video, exercise and suggested solutions.

Each video in the series presents fundamental ideas and is designed to provide constraints and guidance to your thoughts about communicating your data. The purpose of scientific data visualization is not merely to inform but also to answer and generate hypotheses.

Whatever your communication medium, you should always have consistency (good!), redundancy (bad!) and an appropriate mapping between relevant and salience in mind (tricky!). Once these are satisfied, look to flow and density of material to achieve clarity (elusive!).

I present these essential topics using biological data as examples. But if you're not a biologist, don't worry. Instead, think about the data structure rather than meaning and you'll be fine.

Download all course materials.

1. Data Encoding

Make it easy to answer relevant questions.
When you think of data visualization, the first ideas that come to mind are a scatter plot, or a bar char, a box plot or a network diagram. These are all data encodings—methods that relate data values to the positions, sizes and shapes of the lines or symbols that appear on the screen or in a figure. There are many data encodings—which do you choose?
watch | PDF slides


2. Shapes and Symbols

Intuitively encode role and relevance.
Shapes and glyphs are really important. They make up the heart of a lot of data plots. Your default should be the circle. If you need different shapes, try to map the classes as intuitively as possible onto the shapes. Use less prominent symbols for data that are less relevant (such as reference data included for context).
watch | PDF slides


3. Color

Use it for emphasis and visual separation.
Color is one of the most exciting ways in which you can completely screw over your visualization. What can start off as a great diagram can be absolutely ruined by a lack of color judgment. When using color, ask yourself—do I need it? Try to work around it using grey tones from Brewer palettes. If you succeed, you’re in a perfect place to use spot color, sparingly, for emphasis.
watch | PDF slides


4. Uncertainty

Don't make errors in error bars.
Knowing the limits of your knowledge is very important. In biology, it’s important to be able to sample the extent of biological variation. And so being able to show this and other forms of variation in measurements or any computed values in visualizations is very important—it addresses reproducibility and your capacity to make statistical inference. Often this is done with error bars. Ironically, there’s a lot of error associated with the use of and interpretation of error bars.
watch | PDF slides


5. Design

Organize and clarify.
Design plays a large role in data visualization. Think of design as choreography for the page. In our context it’s not merely driven by aesthetic, but function. Although there’s always room for aesthetic—gently applied—and I really encourage you to find your own and continue to refine it. But always remember, be understood before being articulate. Be legible before being attractive! Your goal here isn’t to make inroads on the global stage of aesthetic studies. Become a good visual explainer. It’s harder … and more worth doing.
watch | PDF slides


6. Nothing

No data, no ink.
Data-to-ink ratio, taken to the extreme: if there is no data to show, no ink should be used. The idea of “no data to show” may correspond to a variety of scenarios. There may be sincerely no data to show—no values were collected. Or, there are no significant changes to see. Where possible, you should use empty space to indicate lack of data or lack of change in data. You should never be distracted by something that isn’t relevant and empty space is not distracting—it really just provides contrast to adjacent elements, which presumably correspond to actual data or actionable data.
watch | PDF slides


7. Labels

Respect type and use it to establish hierarchy.
Open up a journal or your favourite text book. Find a figure. There’s probably some labels in there. Maybe it’s a multi-panel figure and the labels are the titles. Maybe there are some callouts that tell you what the parts are. If it’s a plot there are probably axis labels and tick labels and maybe a legend with some labels. There’s usually several informational layers in the image, each with their own labels. These labels should reflect that these layers are different. They should also reflect the relative importance of these layers.
watch | PDF slides


8. Process

Creating a visualization for Scientific American Graphic Science: from start to finish.
Let’s now look at the process of designing a visualization from scratch—from the encoding all the way to design. This was a graphic I did for the June 2015 issue of Scientific American. It appeared on the Graphic Science page.
watch | PDF slides


news + thoughts

Regression modeling of time-to-event data with censoring

Mon 21-11-2022

If you sit on the sofa for your entire life, you’re running a higher risk of getting heart disease and cancer. —Alex Honnold, American rock climber

In a follow-up to our Survival analysis — time-to-event data and censoring article, we look at how regression can be used to account for additional risk factors in survival analysis.

We explore accelerated failure time regression (AFTR) and the Cox Proportional Hazards model (Cox PH).

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Nature Methods Points of Significance column: Regression modeling of time-to-event data with censoring. (read)

Dey, T., Lipsitz, S.R., Cooper, Z., Trinh, Q., Krzywinski, M & Altman, N. (2022) Points of significance: Regression modeling of time-to-event data with censoring. Nature Methods 19.

Music video for Max Cooper's Ascent

Tue 25-10-2022

My 5-dimensional animation sets the visual stage for Max Cooper's Ascent from the album Unspoken Words. I have previously collaborated with Max on telling a story about infinity for his Yearning for the Infinite album.

I provide a walkthrough the video, describe the animation system I created to generate the frames, and show you all the keyframes

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Frame 4897 from the music video of Max Cooper's Asent.

The video recently premiered on YouTube.

Renders of the full scene are available as NFTs.

Gene Cultures exhibit — art at the MIT Museum

Tue 25-10-2022

I am more than my genome and my genome is more than me.

The MIT Museum reopened at its new location on 2nd October 2022. The new Gene Cultures exhibit featured my visualization of the human genome, which walks through the size and organization of the genome and some of the important structures.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
My art at the MIT Museum Gene Cultures exhibit tells shows the scale and structure of the human genome. Pay no attention to the pink chicken.

Annals of Oncology cover

Wed 14-09-2022

My cover design on the 1 September 2022 Annals of Oncology issue shows 570 individual cases of difficult-to-treat cancers. Each case shows the number and type of actionable genomic alterations that were detected and the length of therapies that resulted from the analysis.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
An organic arrangement of 570 individual cases of difficult-to-treat cancers showing genomic changes and therapies. Apperas on Annals of Oncology cover (volume 33, issue 9, 1 September 2022).

Pleasance E et al. Whole-genome and transcriptome analysis enhances precision cancer treatment options (2022) Annals of Oncology 33:939–949.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
My Annals of Oncology 570 cancer cohort cover (volume 33, issue 9, 1 September 2022). (more)

Browse my gallery of cover designs.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
A catalogue of my journal and magazine cover designs. (more)

Survival analysis—time-to-event data and censoring

Fri 05-08-2022

Love's the only engine of survival. —L. Cohen

We begin a series on survival analysis in the context of its two key complications: skew (which calls for the use of probability distributions, such as the Weibull, that can accomodate skew) and censoring (required because we almost always fail to observe the event in question for all subjects).

We discuss right, left and interval censoring and how mishandling censoring can lead to bias and loss of sensitivity in tests that probe for differences in survival times.

Martin Krzywinski @MKrzywinski mkweb.bcgsc.ca
Nature Methods Points of Significance column: Survival analysis—time-to-event data and censoring. (read)

Dey, T., Lipsitz, S.R., Cooper, Z., Trinh, Q., Krzywinski, M & Altman, N. (2022) Points of significance: Survival analysis—time-to-event data and censoring. Nature Methods 19:906–908.


© 1999–2022 Martin Krzywinski | contact | Canada's Michael Smith Genome Sciences CentreBC Cancer Research CenterBC CancerPHSA