Given a location `x` defined in the context of `h` chromosomes, the probability that position `x` is covered at least `\phi` times is `P_{h,\phi}` and given by $$ P_{h,\phi} = \left( 1 - \sum \frac{1}{k!} \left( \frac{\rho}{h}^k \right) e^{-\rho/h} \right)^h \tag{1} $$
For more details, see Wendl, M.C. and R.K. Wilson. 2008. Aspects of coverage in medical DNA sequencing. BMC Bioinformatics 9: 239.
For a given sequencing redundancy `\rho` (e.g. `\rho`-fold, as determined by the length of the haploid genome) of a haploid genome, the fraction of the haploid genome represented by at least `\phi` reads is reported by `P_{h,\phi}`. Coverage by fewer than `\phi` reads is reported as `1-P_{h,\phi}`. Coverage by exactly `\phi` reads is `P_{h,\phi} - P_{h,\phi+1}`. Entries for which fractional coverage is `\lt 10^{-5}` are not shown.
A rudimentary Monte Carlo simulation of genome coverage is also available, and is a useful supplement to the exact probabilities shown here.
http://mkweb.bcgsc.ca/coverage/?aneuploidy=12&depth=200
EXAMPLE 1
Suppose you carried out 3-fold redundant (`\rho=3`) sequencing of a haploid genome (`h=1`). 95.02% of the genome will be covered by at least one read (`P_{1,1}`) while 22.40% will be covered by exactly 3 reads (`P_{1,3} - P_{1,4}`).
EXAMPLE 2
You are sequencing a sample with a tumor content of 25% and you're interested in the depth of sequencing required to detect heterozygous mutations in the tumor. This scenario is equivalent to an aneuploidy = 8 genome—any given allele is present 8 times. If you sequence at (`\rho=200`), then 95% of the bases will be covered at a depth of at least `\phi = 14` (`P_{8,14} = 0.9494`). If you're satisfied with `\phi = 5` then you only need `\rho = 100` since now `P_{8,5} = 0.9580`.
ANALYTICAL vs STOCHASTIC
View plot that compares analytical vs stochastic results.
HAPLOID vs DIPLOID
View plot that compares 100x and 200x coverage of haploid and diploid genomes.
CODE
Download Perl scripts for analytical (to produce the tables below for any `\rho`) and stochastic coverage calculations.
View table for sequencing redundancy `\rho` = 1 2 3 4 5 6 7 8 9 10 20 25 50 75 100 of a haploid genome.
`\phi` | `P_{h,\phi} - P_{h,\phi+1}` | `1-P_{h,\phi}` | `P_{h,\phi}` |
---|---|---|---|
0 | 0.3679 | 0.0000 | 1.0000 |
1 | 0.3679 | 0.3679 | 0.6321 |
2 | 0.1839 | 0.7358 | 0.2642 |
3 | 0.0613 | 0.9197 | 0.0803 |
4 | 0.0153 | 0.9810 | 0.0190 |
5 | 0.0031 | 0.9963 | 0.0037 |
`\phi` | `P_{h,\phi} - P_{h,\phi+1}` | `1-P_{h,\phi}` | `P_{h,\phi}` |
---|---|---|---|
0 | 0.1353 | 0.0000 | 1.0000 |
1 | 0.2707 | 0.1353 | 0.8647 |
2 | 0.2707 | 0.4060 | 0.5940 |
3 | 0.1804 | 0.6767 | 0.3233 |
4 | 0.0902 | 0.8571 | 0.1429 |
5 | 0.0361 | 0.9473 | 0.0527 |
6 | 0.0120 | 0.9834 | 0.0166 |
7 | 0.0034 | 0.9955 | 0.0045 |
8 | 0.0009 | 0.9989 | 0.0011 |
9 | 0.0002 | 0.9998 | 0.0002 |
10 | 0.0000 | 1.0000 | 0.0000 |
`\phi` | `P_{h,\phi} - P_{h,\phi+1}` | `1-P_{h,\phi}` | `P_{h,\phi}` |
---|---|---|---|
0 | 0.0498 | 0.0000 | 1.0000 |
1 | 0.1494 | 0.0498 | 0.9502 |
2 | 0.2240 | 0.1991 | 0.8009 |
3 | 0.2240 | 0.4232 | 0.5768 |
4 | 0.1680 | 0.6472 | 0.3528 |
5 | 0.1008 | 0.8153 | 0.1847 |
6 | 0.0504 | 0.9161 | 0.0839 |
7 | 0.0216 | 0.9665 | 0.0335 |
8 | 0.0081 | 0.9881 | 0.0119 |
9 | 0.0027 | 0.9962 | 0.0038 |
10 | 0.0008 | 0.9989 | 0.0011 |
11 | 0.0002 | 0.9997 | 0.0003 |
12 | 0.0001 | 0.9999 | 0.0001 |
13 | 0.0000 | 1.0000 | 0.0000 |
`\phi` | `P_{h,\phi} - P_{h,\phi+1}` | `1-P_{h,\phi}` | `P_{h,\phi}` |
---|---|---|---|
0 | 0.0183 | 0.0000 | 1.0000 |
1 | 0.0733 | 0.0183 | 0.9817 |
2 | 0.1465 | 0.0916 | 0.9084 |
3 | 0.1954 | 0.2381 | 0.7619 |
4 | 0.1954 | 0.4335 | 0.5665 |
5 | 0.1563 | 0.6288 | 0.3712 |
6 | 0.1042 | 0.7851 | 0.2149 |
7 | 0.0595 | 0.8893 | 0.1107 |
8 | 0.0298 | 0.9489 | 0.0511 |
9 | 0.0132 | 0.9786 | 0.0214 |
10 | 0.0053 | 0.9919 | 0.0081 |
11 | 0.0019 | 0.9972 | 0.0028 |
12 | 0.0006 | 0.9991 | 0.0009 |
13 | 0.0002 | 0.9997 | 0.0003 |
14 | 0.0001 | 0.9999 | 0.0001 |
15 | 0.0000 | 1.0000 | 0.0000 |
`\phi` | `P_{h,\phi} - P_{h,\phi+1}` | `1-P_{h,\phi}` | `P_{h,\phi}` |
---|---|---|---|
0 | 0.0067 | 0.0000 | 1.0000 |
1 | 0.0337 | 0.0067 | 0.9933 |
2 | 0.0842 | 0.0404 | 0.9596 |
3 | 0.1404 | 0.1247 | 0.8753 |
4 | 0.1755 | 0.2650 | 0.7350 |
5 | 0.1755 | 0.4405 | 0.5595 |
6 | 0.1462 | 0.6160 | 0.3840 |
7 | 0.1044 | 0.7622 | 0.2378 |
8 | 0.0653 | 0.8666 | 0.1334 |
9 | 0.0363 | 0.9319 | 0.0681 |
10 | 0.0181 | 0.9682 | 0.0318 |
11 | 0.0082 | 0.9863 | 0.0137 |
12 | 0.0034 | 0.9945 | 0.0055 |
13 | 0.0013 | 0.9980 | 0.0020 |
14 | 0.0005 | 0.9993 | 0.0007 |
15 | 0.0002 | 0.9998 | 0.0002 |
16 | 0.0000 | 0.9999 | 0.0001 |
17 | 0.0000 | 1.0000 | 0.0000 |
`\phi` | `P_{h,\phi} - P_{h,\phi+1}` | `1-P_{h,\phi}` | `P_{h,\phi}` |
---|---|---|---|
0 | 0.0025 | 0.0000 | 1.0000 |
1 | 0.0149 | 0.0025 | 0.9975 |
2 | 0.0446 | 0.0174 | 0.9826 |
3 | 0.0892 | 0.0620 | 0.9380 |
4 | 0.1339 | 0.1512 | 0.8488 |
5 | 0.1606 | 0.2851 | 0.7149 |
6 | 0.1606 | 0.4457 | 0.5543 |
7 | 0.1377 | 0.6063 | 0.3937 |
8 | 0.1033 | 0.7440 | 0.2560 |
9 | 0.0688 | 0.8472 | 0.1528 |
10 | 0.0413 | 0.9161 | 0.0839 |
11 | 0.0225 | 0.9574 | 0.0426 |
12 | 0.0113 | 0.9799 | 0.0201 |
13 | 0.0052 | 0.9912 | 0.0088 |
14 | 0.0022 | 0.9964 | 0.0036 |
15 | 0.0009 | 0.9986 | 0.0014 |
16 | 0.0003 | 0.9995 | 0.0005 |
17 | 0.0001 | 0.9998 | 0.0002 |
18 | 0.0000 | 0.9999 | 0.0001 |
19 | 0.0000 | 1.0000 | 0.0000 |
`\phi` | `P_{h,\phi} - P_{h,\phi+1}` | `1-P_{h,\phi}` | `P_{h,\phi}` |
---|---|---|---|
0 | 0.0009 | 0.0000 | 1.0000 |
1 | 0.0064 | 0.0009 | 0.9991 |
2 | 0.0223 | 0.0073 | 0.9927 |
3 | 0.0521 | 0.0296 | 0.9704 |
4 | 0.0912 | 0.0818 | 0.9182 |
5 | 0.1277 | 0.1730 | 0.8270 |
6 | 0.1490 | 0.3007 | 0.6993 |
7 | 0.1490 | 0.4497 | 0.5503 |
8 | 0.1304 | 0.5987 | 0.4013 |
9 | 0.1014 | 0.7291 | 0.2709 |
10 | 0.0710 | 0.8305 | 0.1695 |
11 | 0.0452 | 0.9015 | 0.0985 |
12 | 0.0263 | 0.9467 | 0.0533 |
13 | 0.0142 | 0.9730 | 0.0270 |
14 | 0.0071 | 0.9872 | 0.0128 |
15 | 0.0033 | 0.9943 | 0.0057 |
16 | 0.0014 | 0.9976 | 0.0024 |
17 | 0.0006 | 0.9990 | 0.0010 |
18 | 0.0002 | 0.9996 | 0.0004 |
19 | 0.0001 | 0.9999 | 0.0001 |
20 | 0.0000 | 1.0000 | 0.0000 |
21 | 0.0000 | 1.0000 | 0.0000 |
`\phi` | `P_{h,\phi} - P_{h,\phi+1}` | `1-P_{h,\phi}` | `P_{h,\phi}` |
---|---|---|---|
0 | 0.0003 | 0.0000 | 1.0000 |
1 | 0.0027 | 0.0003 | 0.9997 |
2 | 0.0107 | 0.0030 | 0.9970 |
3 | 0.0286 | 0.0138 | 0.9862 |
4 | 0.0573 | 0.0424 | 0.9576 |
5 | 0.0916 | 0.0996 | 0.9004 |
6 | 0.1221 | 0.1912 | 0.8088 |
7 | 0.1396 | 0.3134 | 0.6866 |
8 | 0.1396 | 0.4530 | 0.5470 |
9 | 0.1241 | 0.5925 | 0.4075 |
10 | 0.0993 | 0.7166 | 0.2834 |
11 | 0.0722 | 0.8159 | 0.1841 |
12 | 0.0481 | 0.8881 | 0.1119 |
13 | 0.0296 | 0.9362 | 0.0638 |
14 | 0.0169 | 0.9658 | 0.0342 |
15 | 0.0090 | 0.9827 | 0.0173 |
16 | 0.0045 | 0.9918 | 0.0082 |
17 | 0.0021 | 0.9963 | 0.0037 |
18 | 0.0009 | 0.9984 | 0.0016 |
19 | 0.0004 | 0.9993 | 0.0007 |
20 | 0.0002 | 0.9997 | 0.0003 |
21 | 0.0001 | 0.9999 | 0.0001 |
22 | 0.0000 | 1.0000 | 0.0000 |
23 | 0.0000 | 1.0000 | 0.0000 |
`\phi` | `P_{h,\phi} - P_{h,\phi+1}` | `1-P_{h,\phi}` | `P_{h,\phi}` |
---|---|---|---|
0 | 0.0001 | 0.0000 | 1.0000 |
1 | 0.0011 | 0.0001 | 0.9999 |
2 | 0.0050 | 0.0012 | 0.9988 |
3 | 0.0150 | 0.0062 | 0.9938 |
4 | 0.0337 | 0.0212 | 0.9788 |
5 | 0.0607 | 0.0550 | 0.9450 |
6 | 0.0911 | 0.1157 | 0.8843 |
7 | 0.1171 | 0.2068 | 0.7932 |
8 | 0.1318 | 0.3239 | 0.6761 |
9 | 0.1318 | 0.4557 | 0.5443 |
10 | 0.1186 | 0.5874 | 0.4126 |
11 | 0.0970 | 0.7060 | 0.2940 |
12 | 0.0728 | 0.8030 | 0.1970 |
13 | 0.0504 | 0.8758 | 0.1242 |
14 | 0.0324 | 0.9261 | 0.0739 |
15 | 0.0194 | 0.9585 | 0.0415 |
16 | 0.0109 | 0.9780 | 0.0220 |
17 | 0.0058 | 0.9889 | 0.0111 |
18 | 0.0029 | 0.9947 | 0.0053 |
19 | 0.0014 | 0.9976 | 0.0024 |
20 | 0.0006 | 0.9989 | 0.0011 |
21 | 0.0003 | 0.9996 | 0.0004 |
22 | 0.0001 | 0.9998 | 0.0002 |
23 | 0.0000 | 0.9999 | 0.0001 |
24 | 0.0000 | 1.0000 | 0.0000 |
`\phi` | `P_{h,\phi} - P_{h,\phi+1}` | `1-P_{h,\phi}` | `P_{h,\phi}` |
---|---|---|---|
0 | 0.0000 | 0.0000 | 1.0000 |
1 | 0.0005 | 0.0000 | 1.0000 |
2 | 0.0023 | 0.0005 | 0.9995 |
3 | 0.0076 | 0.0028 | 0.9972 |
4 | 0.0189 | 0.0103 | 0.9897 |
5 | 0.0378 | 0.0293 | 0.9707 |
6 | 0.0631 | 0.0671 | 0.9329 |
7 | 0.0901 | 0.1301 | 0.8699 |
8 | 0.1126 | 0.2202 | 0.7798 |
9 | 0.1251 | 0.3328 | 0.6672 |
10 | 0.1251 | 0.4579 | 0.5421 |
11 | 0.1137 | 0.5830 | 0.4170 |
12 | 0.0948 | 0.6968 | 0.3032 |
13 | 0.0729 | 0.7916 | 0.2084 |
14 | 0.0521 | 0.8645 | 0.1355 |
15 | 0.0347 | 0.9165 | 0.0835 |
16 | 0.0217 | 0.9513 | 0.0487 |
17 | 0.0128 | 0.9730 | 0.0270 |
18 | 0.0071 | 0.9857 | 0.0143 |
19 | 0.0037 | 0.9928 | 0.0072 |
20 | 0.0019 | 0.9965 | 0.0035 |
21 | 0.0009 | 0.9984 | 0.0016 |
22 | 0.0004 | 0.9993 | 0.0007 |
23 | 0.0002 | 0.9997 | 0.0003 |
24 | 0.0001 | 0.9999 | 0.0001 |
25 | 0.0000 | 1.0000 | 0.0000 |
26 | 0.0000 | 1.0000 | 0.0000 |
`\phi` | `P_{h,\phi} - P_{h,\phi+1}` | `1-P_{h,\phi}` | `P_{h,\phi}` |
---|---|---|---|
4 | 0.0000 | 0.0000 | 1.0000 |
5 | 0.0001 | 0.0000 | 1.0000 |
6 | 0.0002 | 0.0001 | 0.9999 |
7 | 0.0005 | 0.0003 | 0.9997 |
8 | 0.0013 | 0.0008 | 0.9992 |
9 | 0.0029 | 0.0021 | 0.9979 |
10 | 0.0058 | 0.0050 | 0.9950 |
11 | 0.0106 | 0.0108 | 0.9892 |
12 | 0.0176 | 0.0214 | 0.9786 |
13 | 0.0271 | 0.0390 | 0.9610 |
14 | 0.0387 | 0.0661 | 0.9339 |
15 | 0.0516 | 0.1049 | 0.8951 |
16 | 0.0646 | 0.1565 | 0.8435 |
17 | 0.0760 | 0.2211 | 0.7789 |
18 | 0.0844 | 0.2970 | 0.7030 |
19 | 0.0888 | 0.3814 | 0.6186 |
20 | 0.0888 | 0.4703 | 0.5297 |
21 | 0.0846 | 0.5591 | 0.4409 |
22 | 0.0769 | 0.6437 | 0.3563 |
23 | 0.0669 | 0.7206 | 0.2794 |
24 | 0.0557 | 0.7875 | 0.2125 |
25 | 0.0446 | 0.8432 | 0.1568 |
26 | 0.0343 | 0.8878 | 0.1122 |
27 | 0.0254 | 0.9221 | 0.0779 |
28 | 0.0181 | 0.9475 | 0.0525 |
29 | 0.0125 | 0.9657 | 0.0343 |
30 | 0.0083 | 0.9782 | 0.0218 |
31 | 0.0054 | 0.9865 | 0.0135 |
32 | 0.0034 | 0.9919 | 0.0081 |
33 | 0.0020 | 0.9953 | 0.0047 |
34 | 0.0012 | 0.9973 | 0.0027 |
35 | 0.0007 | 0.9985 | 0.0015 |
36 | 0.0004 | 0.9992 | 0.0008 |
37 | 0.0002 | 0.9996 | 0.0004 |
38 | 0.0001 | 0.9998 | 0.0002 |
39 | 0.0001 | 0.9999 | 0.0001 |
40 | 0.0000 | 0.9999 | 0.0001 |
41 | 0.0000 | 1.0000 | 0.0000 |
42 | 0.0000 | 1.0000 | 0.0000 |
`\phi` | `P_{h,\phi} - P_{h,\phi+1}` | `1-P_{h,\phi}` | `P_{h,\phi}` |
---|---|---|---|
7 | 0.0000 | 0.0000 | 1.0000 |
8 | 0.0001 | 0.0000 | 1.0000 |
9 | 0.0001 | 0.0001 | 0.9999 |
10 | 0.0004 | 0.0002 | 0.9998 |
11 | 0.0008 | 0.0006 | 0.9994 |
12 | 0.0017 | 0.0014 | 0.9986 |
13 | 0.0033 | 0.0031 | 0.9969 |
14 | 0.0059 | 0.0065 | 0.9935 |
15 | 0.0099 | 0.0124 | 0.9876 |
16 | 0.0155 | 0.0223 | 0.9777 |
17 | 0.0227 | 0.0377 | 0.9623 |
18 | 0.0316 | 0.0605 | 0.9395 |
19 | 0.0415 | 0.0920 | 0.9080 |
20 | 0.0519 | 0.1336 | 0.8664 |
21 | 0.0618 | 0.1855 | 0.8145 |
22 | 0.0702 | 0.2473 | 0.7527 |
23 | 0.0763 | 0.3175 | 0.6825 |
24 | 0.0795 | 0.3939 | 0.6061 |
25 | 0.0795 | 0.4734 | 0.5266 |
26 | 0.0765 | 0.5529 | 0.4471 |
27 | 0.0708 | 0.6294 | 0.3706 |
28 | 0.0632 | 0.7002 | 0.2998 |
29 | 0.0545 | 0.7634 | 0.2366 |
30 | 0.0454 | 0.8179 | 0.1821 |
31 | 0.0366 | 0.8633 | 0.1367 |
32 | 0.0286 | 0.8999 | 0.1001 |
33 | 0.0217 | 0.9285 | 0.0715 |
34 | 0.0159 | 0.9502 | 0.0498 |
35 | 0.0114 | 0.9662 | 0.0338 |
36 | 0.0079 | 0.9775 | 0.0225 |
37 | 0.0053 | 0.9854 | 0.0146 |
38 | 0.0035 | 0.9908 | 0.0092 |
39 | 0.0023 | 0.9943 | 0.0057 |
40 | 0.0014 | 0.9966 | 0.0034 |
41 | 0.0009 | 0.9980 | 0.0020 |
42 | 0.0005 | 0.9988 | 0.0012 |
43 | 0.0003 | 0.9993 | 0.0007 |
44 | 0.0002 | 0.9996 | 0.0004 |
45 | 0.0001 | 0.9998 | 0.0002 |
46 | 0.0001 | 0.9999 | 0.0001 |
47 | 0.0000 | 0.9999 | 0.0001 |
48 | 0.0000 | 1.0000 | 0.0000 |
49 | 0.0000 | 1.0000 | 0.0000 |
`\phi` | `P_{h,\phi} - P_{h,\phi+1}` | `1-P_{h,\phi}` | `P_{h,\phi}` |
---|---|---|---|
24 | 0.0000 | 0.0000 | 1.0000 |
25 | 0.0000 | 0.0000 | 1.0000 |
26 | 0.0001 | 0.0001 | 0.9999 |
27 | 0.0001 | 0.0001 | 0.9999 |
28 | 0.0002 | 0.0003 | 0.9997 |
29 | 0.0004 | 0.0005 | 0.9995 |
30 | 0.0007 | 0.0009 | 0.9991 |
31 | 0.0011 | 0.0016 | 0.9984 |
32 | 0.0017 | 0.0027 | 0.9973 |
33 | 0.0026 | 0.0044 | 0.9956 |
34 | 0.0038 | 0.0070 | 0.9930 |
35 | 0.0054 | 0.0108 | 0.9892 |
36 | 0.0075 | 0.0162 | 0.9838 |
37 | 0.0102 | 0.0238 | 0.9762 |
38 | 0.0134 | 0.0340 | 0.9660 |
39 | 0.0172 | 0.0474 | 0.9526 |
40 | 0.0215 | 0.0646 | 0.9354 |
41 | 0.0262 | 0.0861 | 0.9139 |
42 | 0.0312 | 0.1123 | 0.8877 |
43 | 0.0363 | 0.1435 | 0.8565 |
44 | 0.0412 | 0.1798 | 0.8202 |
45 | 0.0458 | 0.2210 | 0.7790 |
46 | 0.0498 | 0.2669 | 0.7331 |
47 | 0.0530 | 0.3167 | 0.6833 |
48 | 0.0552 | 0.3697 | 0.6303 |
49 | 0.0563 | 0.4249 | 0.5751 |
50 | 0.0563 | 0.4812 | 0.5188 |
51 | 0.0552 | 0.5375 | 0.4625 |
52 | 0.0531 | 0.5927 | 0.4073 |
53 | 0.0501 | 0.6458 | 0.3542 |
54 | 0.0464 | 0.6959 | 0.3041 |
55 | 0.0422 | 0.7423 | 0.2577 |
56 | 0.0376 | 0.7845 | 0.2155 |
57 | 0.0330 | 0.8221 | 0.1779 |
58 | 0.0285 | 0.8551 | 0.1449 |
59 | 0.0241 | 0.8836 | 0.1164 |
60 | 0.0201 | 0.9077 | 0.0923 |
61 | 0.0165 | 0.9278 | 0.0722 |
62 | 0.0133 | 0.9443 | 0.0557 |
63 | 0.0105 | 0.9576 | 0.0424 |
64 | 0.0082 | 0.9682 | 0.0318 |
65 | 0.0063 | 0.9764 | 0.0236 |
66 | 0.0048 | 0.9827 | 0.0173 |
67 | 0.0036 | 0.9875 | 0.0125 |
68 | 0.0026 | 0.9911 | 0.0089 |
69 | 0.0019 | 0.9938 | 0.0062 |
70 | 0.0014 | 0.9957 | 0.0043 |
71 | 0.0010 | 0.9970 | 0.0030 |
72 | 0.0007 | 0.9980 | 0.0020 |
73 | 0.0005 | 0.9987 | 0.0013 |
74 | 0.0003 | 0.9991 | 0.0009 |
75 | 0.0002 | 0.9994 | 0.0006 |
76 | 0.0001 | 0.9996 | 0.0004 |
77 | 0.0001 | 0.9998 | 0.0002 |
78 | 0.0001 | 0.9999 | 0.0001 |
79 | 0.0000 | 0.9999 | 0.0001 |
80 | 0.0000 | 0.9999 | 0.0001 |
81 | 0.0000 | 1.0000 | 0.0000 |
82 | 0.0000 | 1.0000 | 0.0000 |
83 | 0.0000 | 1.0000 | 0.0000 |
`\phi` | `P_{h,\phi} - P_{h,\phi+1}` | `1-P_{h,\phi}` | `P_{h,\phi}` |
---|---|---|---|
42 | 0.0000 | 0.0000 | 1.0000 |
43 | 0.0000 | 0.0000 | 1.0000 |
44 | 0.0000 | 0.0000 | 1.0000 |
45 | 0.0001 | 0.0001 | 0.9999 |
46 | 0.0001 | 0.0001 | 0.9999 |
47 | 0.0001 | 0.0002 | 0.9998 |
48 | 0.0002 | 0.0004 | 0.9996 |
49 | 0.0003 | 0.0006 | 0.9994 |
50 | 0.0005 | 0.0009 | 0.9991 |
51 | 0.0007 | 0.0014 | 0.9986 |
52 | 0.0011 | 0.0021 | 0.9979 |
53 | 0.0015 | 0.0032 | 0.9968 |
54 | 0.0021 | 0.0047 | 0.9953 |
55 | 0.0028 | 0.0068 | 0.9932 |
56 | 0.0038 | 0.0096 | 0.9904 |
57 | 0.0050 | 0.0134 | 0.9866 |
58 | 0.0065 | 0.0184 | 0.9816 |
59 | 0.0082 | 0.0249 | 0.9751 |
60 | 0.0103 | 0.0331 | 0.9669 |
61 | 0.0126 | 0.0433 | 0.9567 |
62 | 0.0153 | 0.0560 | 0.9440 |
63 | 0.0182 | 0.0712 | 0.9288 |
64 | 0.0213 | 0.0894 | 0.9106 |
65 | 0.0246 | 0.1107 | 0.8893 |
66 | 0.0279 | 0.1353 | 0.8647 |
67 | 0.0313 | 0.1632 | 0.8368 |
68 | 0.0345 | 0.1945 | 0.8055 |
69 | 0.0375 | 0.2290 | 0.7710 |
70 | 0.0402 | 0.2665 | 0.7335 |
71 | 0.0424 | 0.3066 | 0.6934 |
72 | 0.0442 | 0.3490 | 0.6510 |
73 | 0.0454 | 0.3932 | 0.6068 |
74 | 0.0460 | 0.4386 | 0.5614 |
75 | 0.0460 | 0.4846 | 0.5154 |
76 | 0.0454 | 0.5307 | 0.4693 |
77 | 0.0442 | 0.5761 | 0.4239 |
78 | 0.0425 | 0.6203 | 0.3797 |
79 | 0.0404 | 0.6628 | 0.3372 |
80 | 0.0379 | 0.7032 | 0.2968 |
81 | 0.0350 | 0.7411 | 0.2589 |
82 | 0.0321 | 0.7761 | 0.2239 |
83 | 0.0290 | 0.8082 | 0.1918 |
84 | 0.0259 | 0.8371 | 0.1629 |
85 | 0.0228 | 0.8630 | 0.1370 |
86 | 0.0199 | 0.8858 | 0.1142 |
87 | 0.0172 | 0.9057 | 0.0943 |
88 | 0.0146 | 0.9229 | 0.0771 |
89 | 0.0123 | 0.9375 | 0.0625 |
90 | 0.0103 | 0.9498 | 0.0502 |
91 | 0.0085 | 0.9601 | 0.0399 |
92 | 0.0069 | 0.9685 | 0.0315 |
93 | 0.0056 | 0.9754 | 0.0246 |
94 | 0.0044 | 0.9810 | 0.0190 |
95 | 0.0035 | 0.9854 | 0.0146 |
96 | 0.0027 | 0.9889 | 0.0111 |
97 | 0.0021 | 0.9917 | 0.0083 |
98 | 0.0016 | 0.9938 | 0.0062 |
99 | 0.0012 | 0.9954 | 0.0046 |
100 | 0.0009 | 0.9966 | 0.0034 |
101 | 0.0007 | 0.9976 | 0.0024 |
102 | 0.0005 | 0.9983 | 0.0017 |
103 | 0.0004 | 0.9988 | 0.0012 |
104 | 0.0003 | 0.9991 | 0.0009 |
105 | 0.0002 | 0.9994 | 0.0006 |
106 | 0.0001 | 0.9996 | 0.0004 |
107 | 0.0001 | 0.9997 | 0.0003 |
108 | 0.0001 | 0.9998 | 0.0002 |
109 | 0.0000 | 0.9999 | 0.0001 |
110 | 0.0000 | 0.9999 | 0.0001 |
111 | 0.0000 | 0.9999 | 0.0001 |
112 | 0.0000 | 1.0000 | 0.0000 |
113 | 0.0000 | 1.0000 | 0.0000 |
114 | 0.0000 | 1.0000 | 0.0000 |
115 | 0.0000 | 1.0000 | 0.0000 |
`\phi` | `P_{h,\phi} - P_{h,\phi+1}` | `1-P_{h,\phi}` | `P_{h,\phi}` |
---|---|---|---|
61 | 0.0000 | 0.0000 | 1.0000 |
62 | 0.0000 | 0.0000 | 1.0000 |
63 | 0.0000 | 0.0000 | 1.0000 |
64 | 0.0000 | 0.0000 | 1.0000 |
65 | 0.0000 | 0.0001 | 0.9999 |
66 | 0.0001 | 0.0001 | 0.9999 |
67 | 0.0001 | 0.0002 | 0.9998 |
68 | 0.0002 | 0.0003 | 0.9997 |
69 | 0.0002 | 0.0004 | 0.9996 |
70 | 0.0003 | 0.0007 | 0.9993 |
71 | 0.0004 | 0.0010 | 0.9990 |
72 | 0.0006 | 0.0014 | 0.9986 |
73 | 0.0008 | 0.0020 | 0.9980 |
74 | 0.0011 | 0.0028 | 0.9972 |
75 | 0.0015 | 0.0040 | 0.9960 |
76 | 0.0020 | 0.0055 | 0.9945 |
77 | 0.0026 | 0.0074 | 0.9926 |
78 | 0.0033 | 0.0100 | 0.9900 |
79 | 0.0042 | 0.0133 | 0.9867 |
80 | 0.0052 | 0.0175 | 0.9825 |
81 | 0.0064 | 0.0226 | 0.9774 |
82 | 0.0078 | 0.0291 | 0.9709 |
83 | 0.0094 | 0.0369 | 0.9631 |
84 | 0.0112 | 0.0463 | 0.9537 |
85 | 0.0132 | 0.0575 | 0.9425 |
86 | 0.0154 | 0.0708 | 0.9292 |
87 | 0.0176 | 0.0861 | 0.9139 |
88 | 0.0201 | 0.1038 | 0.8962 |
89 | 0.0225 | 0.1238 | 0.8762 |
90 | 0.0250 | 0.1463 | 0.8537 |
91 | 0.0275 | 0.1714 | 0.8286 |
92 | 0.0299 | 0.1989 | 0.8011 |
93 | 0.0322 | 0.2288 | 0.7712 |
94 | 0.0342 | 0.2610 | 0.7390 |
95 | 0.0360 | 0.2952 | 0.7048 |
96 | 0.0375 | 0.3312 | 0.6688 |
97 | 0.0387 | 0.3687 | 0.6313 |
98 | 0.0395 | 0.4074 | 0.5926 |
99 | 0.0399 | 0.4468 | 0.5532 |
100 | 0.0399 | 0.4867 | 0.5133 |
101 | 0.0395 | 0.5266 | 0.4734 |
102 | 0.0387 | 0.5660 | 0.4340 |
103 | 0.0376 | 0.6047 | 0.3953 |
104 | 0.0361 | 0.6423 | 0.3577 |
105 | 0.0344 | 0.6784 | 0.3216 |
106 | 0.0325 | 0.7128 | 0.2872 |
107 | 0.0303 | 0.7453 | 0.2547 |
108 | 0.0281 | 0.7756 | 0.2244 |
109 | 0.0258 | 0.8037 | 0.1963 |
110 | 0.0234 | 0.8294 | 0.1706 |
111 | 0.0211 | 0.8529 | 0.1471 |
112 | 0.0188 | 0.8740 | 0.1260 |
113 | 0.0167 | 0.8928 | 0.1072 |
114 | 0.0146 | 0.9095 | 0.0905 |
115 | 0.0127 | 0.9241 | 0.0759 |
116 | 0.0110 | 0.9368 | 0.0632 |
117 | 0.0094 | 0.9478 | 0.0522 |
118 | 0.0079 | 0.9572 | 0.0428 |
119 | 0.0067 | 0.9651 | 0.0349 |
120 | 0.0056 | 0.9718 | 0.0282 |
121 | 0.0046 | 0.9773 | 0.0227 |
122 | 0.0038 | 0.9819 | 0.0181 |
123 | 0.0031 | 0.9857 | 0.0143 |
124 | 0.0025 | 0.9888 | 0.0112 |
125 | 0.0020 | 0.9912 | 0.0088 |
126 | 0.0016 | 0.9932 | 0.0068 |
127 | 0.0012 | 0.9948 | 0.0052 |
128 | 0.0010 | 0.9960 | 0.0040 |
129 | 0.0007 | 0.9970 | 0.0030 |
130 | 0.0006 | 0.9977 | 0.0023 |
131 | 0.0004 | 0.9983 | 0.0017 |
132 | 0.0003 | 0.9987 | 0.0013 |
133 | 0.0003 | 0.9991 | 0.0009 |
134 | 0.0002 | 0.9993 | 0.0007 |
135 | 0.0001 | 0.9995 | 0.0005 |
136 | 0.0001 | 0.9996 | 0.0004 |
137 | 0.0001 | 0.9997 | 0.0003 |
138 | 0.0001 | 0.9998 | 0.0002 |
139 | 0.0000 | 0.9999 | 0.0001 |
140 | 0.0000 | 0.9999 | 0.0001 |
141 | 0.0000 | 0.9999 | 0.0001 |
142 | 0.0000 | 1.0000 | 0.0000 |
143 | 0.0000 | 1.0000 | 0.0000 |
144 | 0.0000 | 1.0000 | 0.0000 |
145 | 0.0000 | 1.0000 | 0.0000 |
Nature is often hidden, sometimes overcome, seldom extinguished. —Francis Bacon
In the first of a series of columns about neural networks, we introduce them with an intuitive approach that draws from our discussion about logistic regression.
Simple neural networks are just a chain of linear regressions. And, although neural network models can get very complicated, their essence can be understood in terms of relatively basic principles.
We show how neural network components (neurons) can be arranged in the network and discuss the ideas of hidden layers. Using a simple data set we show how even a 3-neuron neural network can already model relatively complicated data patterns.
Derry, A., Krzywinski, M & Altman, N. (2023) Points of significance: Neural network primer. Nature Methods 20.
Lever, J., Krzywinski, M. & Altman, N. (2016) Points of significance: Logistic regression. Nature Methods 13:541–542.
Our cover on the 11 January 2023 Cell Genomics issue depicts the process of determining the parent-of-origin using differential methylation of alleles at imprinted regions (iDMRs) is imagined as a circuit.
Designed in collaboration with with Carlos Urzua.
Akbari, V. et al. Parent-of-origin detection and chromosome-scale haplotyping using long-read DNA methylation sequencing and Strand-seq (2023) Cell Genomics 3(1).
Browse my gallery of cover designs.
My cover design on the 6 January 2023 Science Advances issue depicts DNA sequencing read translation in high-dimensional space. The image showss 672 bases of sequencing barcodes generated by three different single-cell RNA sequencing platforms were encoded as oriented triangles on the faces of three 7-dimensional cubes.
More details about the design.
Kijima, Y. et al. A universal sequencing read interpreter (2023) Science Advances 9.
Browse my gallery of cover designs.
If you sit on the sofa for your entire life, you’re running a higher risk of getting heart disease and cancer. —Alex Honnold, American rock climber
In a follow-up to our Survival analysis — time-to-event data and censoring article, we look at how regression can be used to account for additional risk factors in survival analysis.
We explore accelerated failure time regression (AFTR) and the Cox Proportional Hazards model (Cox PH).
Dey, T., Lipsitz, S.R., Cooper, Z., Trinh, Q., Krzywinski, M & Altman, N. (2022) Points of significance: Regression modeling of time-to-event data with censoring. Nature Methods 19.
My 5-dimensional animation sets the visual stage for Max Cooper's Ascent from the album Unspoken Words. I have previously collaborated with Max on telling a story about infinity for his Yearning for the Infinite album.
I provide a walkthrough the video, describe the animation system I created to generate the frames, and show you all the keyframes
The video recently premiered on YouTube.
Renders of the full scene are available as NFTs.
I am more than my genome and my genome is more than me.
The MIT Museum reopened at its new location on 2nd October 2022. The new Gene Cultures exhibit featured my visualization of the human genome, which walks through the size and organization of the genome and some of the important structures.