Martin Krzywinski / Canada's Michael Smith Genome Sciences Centre / Martin Krzywinski / Canada's Michael Smith Genome Sciences Centre / - contact me Martin Krzywinski / Canada's Michael Smith Genome Sciences Centre / on Twitter Martin Krzywinski / Canada's Michael Smith Genome Sciences Centre / - Lumondo Photography Martin Krzywinski / Canada's Michael Smith Genome Sciences Centre / - Pi Art Martin Krzywinski / Canada's Michael Smith Genome Sciences Centre / - Hilbertonians - Creatures on the Hilbert CurveMartin Krzywinski / Canada's Michael Smith Genome Sciences Centre / - Pi Day 2020 - Piku
Trance opera—Spente le Stellebe dramaticmore quotes

hue: beautiful

Martin Krzywinski / Canada's Michael Smith Genome Sciences Centre /
The Outbreak Poems — artistic emissions in a pandemic

visualization + design

Brewer Palettes

Brewer Palettes at a Glance

Martin Krzywinski @MKrzywinski
All the Brewer palettes: qualitative, sequential and diverging. For each palette (e.g. spectral) the source colors are shown as well as all its n-color subsets. (zoom)

Presentation About Color and Brewer Palettes

If you're new to Brewer palettes, or color, catch up with this presentation. Color palettes matter - Brewer palettes and perceptual uniformity - Martin Krzywinski


I maintain a comprehensive database of named colors (3,116 colors), compiled from a variety of color name lists.

Visualization and Perception

Why Should Engineers and Scientists Be Worried About Color? by Bernice E. Rogowitz and Lloyd A. Treinish (IBM Thomas J. Watson Research Center, Yorktown Heights, NY).

Perception in Visualization by Christopher G. Healey (Department of Computer Science, North Carolina State University)

LAB and LCH gradient picker

Martin Krzywinski @MKrzywinski
Interactively create LAB and LCH color gradients interpolated across any number of colors.

Lch and Lab colour and gradient picker is a great tool by David Johnstone. It's a great way to generate color ramps—go ahead, go crazy!—and compare how the ramps look in different color spaces. Shame on you, HSV!

PaletteView — create continuous Brewer palettes

PaletteView is an exceptional tool by Magnaview to create continuous Brewer palettes. This tool is described in [1] and operationalizes Cyntha Brewer's color selection method into an algorithm that selects customizable color palettes from LCH space.

[1] Wijffelaars M, Vliegen R, Van Wijk JJ et al. 2008 Generating Color Palettes using Intuitive Parameters Computer Graphics Forum 27:743-750.

Brewer Palette Adobe Swatch Files

You can import Brewer palettes into Adobe applications such as Illustrator, Photoshop and InDesign using either the .ase or .ai swatch files.


Brewer palette ase swatch file for Adobe Illustrator Brewer palette ai swatch file for Adobe Illustrator Brewer palette pdf color file Brewer palette txt color file


In Illustrator, load the swatches from the swatch window menu. The swatch window can be accessed using Window > Swatches.

Select Open swatch library

then choose Other library...

and load either the .ase or .ai file — both contain the same content.

Brewer palettes are color combinations selected for their special properties for use in data visualization and information design.

The challenge

Selecting effective colors for bar plots, pie charts, and heat maps is made more difficult by the fact that the way we select color in software does not reflect how we perceive the color.

There are many examples of poor color combinations in published figures. For example, if categories are encoded with a combination of bright and dark colors, the bright colors will dominate the reader's attention. On the other hand, if two colors appear similar, the reader will instinctively perceive them as belonging to a group and infer that the underlying variables are related.

Colors with poor contrast (colors with similar perceived brightness) or simultaneous contrast (pure colors) also interfere with interpreting figures.

Selecting Colors in RGB and HSV

Most people select colors using RGB sliders, which is just about the worst way to pick a color! Consider the fact that when we look at a color, we cannot easily decompose it into its red, green and blue components. This limits usefulness of RGB for color selection.

HSV is a better color space, which defines a color based on hue, saturation and value. These are three properties that we intuitively assess when we see a color. We think of a "dark rich blue" and "light faded red", making HSV a reasonably useful model for color selection. Unfortunately, HSV has a nagging problem — although it is based on intuitive parameters, it is not perceptually uniform.

Perceptual Uniformity

A color space that is perceptually uniform defines colors based on how we perceive them. Distances between colors in the space are proportional to their perceived difference.

Above, we saw that HSV was not perceptually uniform. Moving the hue slider by 60 can have a small or large effect on a color, depending on where the slider is positioned.

Consider the following example. You have a chart that uses two colors, and orange and green. Both were chosen with S=V=100%. You now need to select a second color for each that is brighter. You cannot directly use HSV because both orange and green colors are already at full value. How do you intuitively increase brightness?

The reason why you cannot in do this in HSV is because V does not directly correspond to the color's perceived brightness. You are stuck fiddling with the saturation and value to try to select a brighter pairing.

What would be useful here is a color space which uses the intuitive parameters of HSV, but is perceptually based. In other words, instead of value, the space would define a color based on its perceived brightness. Luckily, this space exists — LCH, which defines color based on its luminance (perceived brightness), chroma (purity) and hue. Unfortunately, design and presentation software do not have LCH sliders and we cannot easily take advantage of this color space.

This is where the Brewer palettes come in.

Brewer Palettes

Brewer palettes were selected for their perceptual properties. These palettes were created by Cynthia Brewer for the purpose in cartography, but have found use in other fields.

Types of Brewer Palettes

There are three types of Brewer palettes

  • qualitative — colors do not have a perceived order
  • sequential — colors have a perceived order and perceived difference between successive colors is uniform
  • diverging — two back-to-back sequential palettes starting from a common color

Swatches of Brewer Palettes

I have prepared Brewer palette swatches in .ase or .ai format. For programming, use the plain-text version.

The image below (zoom) shows all the Brewer palettes.

Brewer palette colors - all swatches

Uses of Brewer Palettes

Qualitative palettes are excellent for bar plots and pie charts, where colors correspond to categories.

Grayscale Brewer palettes are available and are perfect for achieving good tone separation in black-and-white figures.

Sequential and diverging palettes are useful for heatmaps.

Brewer Palettes and Color Blindness

Some Brewer palettes are safe for color blindness — the pink-yellow-green (piyg) is one. For others, see colorbrewer.

I have designed 15-color palettes for color blindess for each of the three common types of color blindness.


news + thoughts

Virus Mutations Reveal How COVID-19 Really Spread

Mon 04-05-2020

Genetic sequences of the coronavirus tell story of when the virus arrived in each country and where it came from.

Our graphic in Scientific American's Graphic Science section in the June 2020 issue shows a phylogenetic tree based on a snapshot of the data model from Nextstrain as of 31 March 2020.

Martin Krzywinski @MKrzywinski
Virus Mutations Reveal How COVID-19 Really Spread. Text by Mark Fischetti (Senior Editor), art direction by Jen Christiansen (Senior Graphics Editor), source: Nextstrain (enabled by data from GISAID).

Cover of Nature Cancer April 2020

Mon 27-04-2020

Our design on the cover of Nature Cancer's April 2020 issue shows mutation spectra of patients from the POG570 cohort of 570 individuals with advanced metastatic cancer.

Martin Krzywinski @MKrzywinski
Each ellipse system represents the mutation spectrum of an individual patient. Individual ellipses in the system correspond to the number of base changes in a given class and are layered by mutation count. Ellipse angle is controlled by the proportion of mutations in a class within the sample and its size is determined by a sigmoid mapping of mutation count scaled within the layer. The opacity of each system represents the duration since the diagnosis of advanced disease. (read more)

The cover design accompanies our report in the issue Pleasance, E., Titmuss, E., Williamson, L. et al. (2020) Pan-cancer analysis of advanced patient tumors reveals interactions between therapy and genomic landscapes. Nat Cancer 1:452–468.

Modeling infectious epidemics

Wed 06-05-2020

Every day sadder and sadder news of its increase. In the City died this week 7496; and of them, 6102 of the plague. But it is feared that the true number of the dead this week is near 10,000 ....
—Samuel Pepys, 1665

This month, we begin a series of columns on epidemiological models. We start with the basic SIR model, which models the spread of an infection between three groups in a population: susceptible, infected and recovered.

Martin Krzywinski @MKrzywinski
Nature Methods Points of Significance column: Modeling infectious epidemics. (read)

We discuss conditions under which an outbreak occurs, estimates of spread characteristics and the effects that mitigation can play on disease trajectories. We show the trends that arise when "flattenting the curve" by decreasing `R_0`.

Martin Krzywinski @MKrzywinski
Nature Methods Points of Significance column: Modeling infectious epidemics. (read)

This column has an interactive supplemental component that allows you to explore how the model curves change with parameters such as infectious period, basic reproduction number and vaccination level.

Martin Krzywinski @MKrzywinski
Nature Methods Points of Significance column: Modeling infectious epidemics. (Interactive supplemental materials)

Bjørnstad, O.N., Shea, K., Krzywinski, M. & Altman, N. (2020) Points of significance: Modeling infectious epidemics. Nature Methods 17:455–456.

The Outbreak Poems

Sat 04-04-2020

I'm writing poetry daily to put my feelings into words more often during the COVID-19 outbreak.

That moment
you know a moment.
Branch to branch,
look everywhere,
of thought fleeting.
Distant pasts
ways in plural

Read the poems and learn what a piku is.